ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-08-21
    Description: The dimeric motor protein kinesin-1 converts chemical energy from ATP hydrolysis into mechanical work used to transport cargo along microtubules. Cargo attached to the kinesin stalk moves processively in 8-nm increments as its twin motor domains (heads) carry out an asymmetric, 'hand-over-hand' walk. The extent of individual head interactions with the microtubule during stepping, however, remains controversial. A major experimental limitation has been the lack of a means to monitor the attachment of an individual head to the microtubule during movement, necessitating indirect approaches. Here we report the development of a single-molecule assay that can directly report head binding in a walking kinesin molecule, and show that only a single head is bound to the microtubule between steps at low ATP concentrations. A bead was linked to one of the two kinesin heads by means of a short DNA tether and used to apply rapidly alternating hindering and assisting loads with an optical trap. The time-dependent difference between forwards and backwards displacements of the bead alternated between two discrete values during stepping, corresponding to those intervals when the linked head adopted a bound or an unbound state. The linked head could only rebind the microtubule once ATP had become bound to its partner head.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859689/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859689/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guydosh, Nicholas R -- Block, Steven M -- GM51453/GM/NIGMS NIH HHS/ -- R01 GM051453/GM/NIGMS NIH HHS/ -- R01 GM051453-15/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Sep 3;461(7260):125-8. doi: 10.1038/nature08259. Epub 2009 Aug 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Program, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19693012" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism/pharmacology ; Animals ; DNA/chemistry/metabolism ; Drosophila melanogaster ; Kinesin/*chemistry/*metabolism ; Microspheres ; Microtubules/*metabolism ; Movement/drug effects ; Optical Tweezers ; Protein Binding/drug effects ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-08-30
    Description: Lambda exonuclease processively degrades one strand of duplex DNA, moving 5'-to-3' in an ATP-independent fashion. When examined at the single-molecule level, the speeds of digestion were nearly constant at 4 nanometers per second (12 nucleotides per second), interspersed with pauses of variable duration. Long pauses, occurring at stereotypical locations, were strand-specific and sequence-dependent. Pause duration and probability varied widely. The strongest pause, GGCGAT TCT, was identified by gel electrophoresis. Correlating single-molecule dwell positions with sequence independently identified the motif GGCGA. This sequence is found in the left lambda cohesive end, where exonuclease inhibition may contribute to the reduced recombination efficiency at that end.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1539570/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1539570/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perkins, Thomas T -- Dalal, Ravindra V -- Mitsis, Paul G -- Block, Steven M -- GM 57035/GM/NIGMS NIH HHS/ -- HG 011821-01/HG/NHGRI NIH HHS/ -- R01 GM057035/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 26;301(5641):1914-8. Epub 2003 Aug 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA. tperkins@jila.colorado.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12947034" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage lambda/enzymology ; Base Pairing ; *Base Sequence ; Binding Sites ; Consensus Sequence ; DNA/*chemistry/*metabolism ; Electrophoresis, Polyacrylamide Gel ; Exodeoxyribonucleases/*metabolism ; Hydrogen Bonding ; Kinetics ; Models, Chemical ; Oligodeoxyribonucleotides/chemistry/metabolism ; Polymerase Chain Reaction ; Probability ; Stochastic Processes ; Time Factors ; Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...