ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Space science reviews 92 (2000), S. 177-200 
    ISSN: 1572-9672
    Keywords: Solar Nebula ; Kinetics ; Thermochemistry ; Magnetite ; Troilite ; Water ; Hydrous Minerals ; Hydration ; Oxidation ; Volatiles ; Serpentine ; Talc ; Brucite
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Thermochemical equilibrium calculations predict gas phase, gas-grain, and solid phase reactions as a function of pressure and temperature in the solar nebula. However, chemical reactions proceed at different rates, which generally decrease exponentially with decreasing temperature. At sufficiently low temperatures (which vary depending on the specific reaction) there may not have been enough time for the predicted equilibrium chemistry to have taken place before the local environment cooled significantly or before the gaseous solar nebula was dispersed. As a consequence, some of the high temperature chemistry established in sufficiently hot regions of the solar nebula may be quenched or frozen in without the production of predicted low temperature phases. Experimental studies and theoretical models of three exemplary low temperature reactions, the formation of troilite (FeS), magnetite (Fe3O4), and hydrous silicates, have been done to quantify these ideas. A comparison of the chemical reaction rates with the estimated nebular lifetime of 0.1-10 million years indicates that troilite formation proceeded to completion in the solar nebula. Magnetite formation was much slower and only thin magnetite rims could have formed on metal grains. Hydrous silicate formation is predicted to be even slower, and hydrous silicates in meteorites and interplanetary dust particles probably formed later on the parent bodies of these objects, instead of in the solar nebula.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...