ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (1)
  • Thermal time  (1)
  • 1985-1989  (2)
  • 1935-1939
  • 1986  (2)
  • 1
    ISSN: 1573-5036
    Keywords: Development ; Model ; Root ; Shoot ; Thermal time ; Wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A model has been developed of root growth in winter wheat based on cumulative thermal time with description of the extension and branching of individual age classes of seminal and crown root axes. The model requires, as input, the sowing date and average monthly mean air temperatures and gives, as output, the maximum depth of penetration of each age class of root and the root length density or root weight in any 10 cm layer of soil contributed by main axes, first-order and second-order laterals on any calendar date. The impact of soil temperature on root length density distributions with time was assessed by comparing a warm site (Perth, Australia) with a cool site (Rothamsted Experimental Station, England). Simulated values of root length density for plants with six leaves were consistently high when soil temperature was held constant at 10°C, but variable soil temperatures at each site resulted in rooting profiles characteristic for the two sites, although root length densities were larger than commonly observed at either location. The model simulates well described sequences of root production and permits calculation of maximal root development rates for unstressed plants growing in moist soil with no mechanical impedance to growth. It allows the co-development of root and shoot to be modelled and since it uses only about 5 K bytes of computer memory could be easily used for the assessment of management practices in the field.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Electron Microscopy Technique 4 (1986), S. 142-145 
    ISSN: 0741-0581
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...