ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Feeding deterrent  (1)
  • Temperature  (1)
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Biological Invasions 13 (2011): 2513-2531, doi:10.1007/s10530-011-0078-8.
    Description: The spiny water flea (Bythotrephes longimanus) is spreading from Great Lakes coastal waters into northern inland lakes within a northern temperature-defined latitudinal band. Colonization of Great Lakes coastal embayments is assisted by winds and seiche surges, yet rapid inland expansion across the northern states comes through an overland process. The lack of invasions at Isle Royale National Park contrasts with rapid expansion on the nearby Keweenaw Peninsula. Both regions have comparable geology, lake density, and fauna, but differ in recreational fishing boat access, visitation, and containment measures. Tail spines protect Bythotrephes against young of the year, but not larger fish, yet the unusual thick-shelled diapausing eggs can pass through fish guts in viable condition. Sediment traps illustrate how fish spread diapausing eggs across lakes in fecal pellets. Trillions of diapausing eggs are produced per year in Lake Michigan and billions per year in Lake Michigamme, a large inland lake. Dispersal by recreational fishing is linked to use of baitfish, diapausing eggs defecated into live wells and bait buckets, and Bythothephes snagged on fishing line, anchor ropes, and minnow seines. Relatively simple measures, such as on-site rinsing of live wells, restricting transfer of certain baitfish species, or holding baitfish for 24 h (defecation period), should greatly reduce dispersal.
    Description: Study of Lakes Superior and Michigan was funded from NSF OCE-9726680 and OCE-9712872 to W.C.K., OCE-9712889 to J. Churchill. Geographic survey sampling and Park studies in the national parks during 2008-2010 were funded by a grant from the National Park Service Natural Resource Preservation Program GLNF CESU Task Agreement No. J6067080012.
    Keywords: Spiny cladoceran ; Dispersal ; Temperature ; Diapausing eggs ; YOY fish
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Crucifer ; Chemical defense ; Feeding deterrent ; Streams ; Freshwater
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Watercress (Nasturtium officinale) possesses the glucosinolate-myrosinase system. This system is regarded as a classic example of chemical defense for terrestrial crucifers. Damage of watercress initiates myrosinase-mediated hydrolysis of phenylethyl glucosinolate to a toxic endproduct, phenylethyl isothiocyanate. In multiple choice tests, the amphipod Gammarus pseudolimnaeus, the limnephilid caddisflies Hesperophylax designatus and Limnephilus sp., and the physid snail Physella sp. all strongly preferred (10X) yellowed senescent watercress (FY) over fresh green watercress (FG), despite the 2X higher nitrogen content of green watercress (6.9% for FG vs 3.8% for FY). Green watercress contained 10–40 X more glucosinolate than FY watercress (6.4–8.5 mg/g wet for FG vs 0.2–0.7 mg/g wet for FY). However, when the watercress was heated (ca 70°C), to deactivate the myrosinase enzyme, multiple choice tests showed that these species shift their preferences to heated green watercress (HG). Heating deactivated the deterrent effect and overall preference (consumption) was HG ≥ HY 〉 FY ≫ FG for Gammarus. HG 〉 HY ≥ FY ≫ FG for Hesperophylax, HG 〉 FY ≥HY ≥ FG for Limnephilus, and HG ≥ FY 〉 HY ≥ FG for Physella. Thus heating resulted in a shift in preference from the low glucosinolate, but low nitrogen, unheated yellowed tissue to the high nitrogen green tissue. These results suggest that deactivation of the myrosinase enzyme, and hence isothiocyanate production, results in a shift in preference. Preliminary results with Hesperophylax indicate that addition of myrosinase to the test water, which resulted in the formation of isothiocyanate, results in a significant decrease in HG consumption from control levels (p 〈 0.001) and no change in preference for HY watercress. With Gammarus, myrosinase resulted in reduced consumption of both green and yellowed watercress, but no significant differential effect. These results provide evidence that the glucosinolate-myrosinase system, recognized as the principle deterrent system of terrestrial crucifers, is the feeding deterrent in watercress and also suggest that in the absence of a functioning deterrent system, nitrogen content may influence consumption.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...