ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lipid A intermediates  (1)
  • Taxonomy  (1)
  • 1
    ISSN: 1432-072X
    Keywords: KDO mutant ; Lipid A intermediates ; Hexadecanoic acid substitution ; Biosynthesis of lipid A
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The extraction, purification and structural characterization of two lipid A precursors (Ia and Ib) differing only in one hexadecanoic acid are described. Both precursors were synthesized at elevated temperatures by a new mutant of Salmonella typhimurium (mutant Ts5) which is conditionally defective in synthesis of the 3-deoxy-d-manno-octulosonic acid region of lipopolysaccharides. Both precursors were purified by repeated phenol/chloroform/petroleum ether (PCP) extractions followed by thin layer chromatography. Teh precursor preparation was free of lipopolysaccharides and phospholipids and contained less than 0.1% protein. Structural analysis which included chemical degradation procedures as well as positive ion laser desorption (LDMS) mass spectroscopy of dephosphorylated lipid A precursors showed together that precursor Ia represents a diphosphorylated glucosamine disaccharide containing two ester, two amide-linked residues of 3-hydroxytetradecanoic acid and lacks the ester-linked dodecanoic, tetradecanoic and hexadecanoic acid as well as 3-deoxy-d-manno-octulosonic acid. Precursor Ib has the same basic structure as precursor Ia, but contains in addition one mol of hexadecanoic acid per mol disaccharide which is linked to the 3-hydroxy group of the amide-bound 3-hydroxy-tetradecanoic acid of the reducing, terminal glucosamine residue. The structure of precursor Ib supports the conclusion that hexadecanoic acid incorporation occurs at an early stage in lipid A biosynthesis prior to the attachment of 3-deoxy-d-manno-octulosonic acid and/or other polar substituents.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Taxonomy ; Chemical analyses ; Long-chain fatty acids ; 2,3-Diamino-2,3-dideoxy-d-glucose
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Lipopolysaccharides (LPS) from Legionella bozemanii serogroup 1 and Legionella longbeachae serogroup 1 were subjected to chemical analyses. The lipid A part of both LPSs contained 2,3-dideoxy-2,3-diamino-d-glucose as major constituents and d-glucosamine and glycerol as minor constituents of the sugar backbone structure. Both LPSs exhibited a very complex fatty acid composition. Twenty amide-linked 3-hydroxy fatty acids were detected in LPS of L. longbeachae, whereas seventeen were encountered in LPS of L. bozemanii. Both LPSs contained nine ester-linked nonhydroxy fatty acids and the unique long-chain fatty acids 27-oxo-octacosanoic acid, 29-oxotriacontanoic acid, heptacosane-1,27-dioic acid and nonacosane-1,29-dioic acid. SDS-PAGE showed that L. bozemanii produced smooth-form LPS, whereas L. longbeachae LPS was mainly of the R-type. Composition analyses were in accordance with these electrophoretic patterns. d-Quinovosamine and l-fucosamine constituted 80 mol% of the polysaccharide part of L. bozemanii LPS. Other sugars identified were d-glucosamine, d-mannose, d-glucose, l-rhamnose, d-glycero-d-manno-heptose, l-glycero-d-mannoheptose, 2-keto-3-deoxy-octonic acid and glycerol. The polysaccharide chain from LPS of L. longbeachae appeared to be shorter, but composed of the same sugars except l-fucosamine. Both LPSs contained glycerol phosphate and glucosamine phosphate and L. longbeachae LPS contained in addition glucose phosphate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...