ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 153 (1990), S. 405-408 
    ISSN: 1432-072X
    Keywords: Cyanobacteria ; Exudation ; Salt stress ; Glucosylglycerol ; Synechocystis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When cells of Synechocystis, adapted to 684 mmol/l NaCl, were exposed to hypoosmotic shock by reducing NaCl concentration to more than 250 mmol/l, significant amounts of organic material were liberated which could be increased by increasing shock strength. After maximal hypoosmotic shock (684 mmol/l→ 2 mmol/l NaCl) 40–50% of photosynthetically labelled organic material occurred in the surrounding medium. The main compound exudates was the osmoprotective compound glucosylglycerol. Minor exudates were amino acids, organic acids and carbohydrates. In contrast a hyperosmotic shock (2 mmol/l→684 mmol/l NaCl) liberated only one fourth of the amount liberated by a hypoosmotic shock.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 171 (1999), S. 214-217 
    ISSN: 1432-072X
    Keywords: Key words Cyanobacteria ; Periplasmic proteins ; Salt ; adaptation ; Synechocystis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Periplasmic proteins were obtained from control cells and salt-adapted cells of the cyanobacterium Synechocystis sp. PCC 6803 using the method of cold osmotic shock. Two of these proteins (PP 1, apparent mol. mass 27.6 kDa, and PP 3, apparent mol. mass 39.9 kDa) were accumulated in high amounts in the periplasm of salt-adapted cells, while the major periplasmic protein (PP 2, apparent mol. mass 36.0 kDa) was accumulated independently from salt. After isolation from gels and partial sequencing, the proteins could be assigned to proteins deduced from the complete genome sequence of Synechocystis. Neither salt-induced periplasmic proteins (PP 1, Slr0924 and PP 3, Slr1485) exhibited sequence similarity to proteins of known function from databases. The major protein (PP 2-Slr0513) showed significant sequence similarities to iron-binding proteins. All proteins included typical leader sequences at their N-terminus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Key words Cyanobacteria ; Glucosylglycerol-phosphate ; synthase/phosphatase ; Ions ; Osmolytes ; Salt activation ; Synechocystis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The response of cyanobacteria to a changing osmotic environment includes the accumulation of organic osmolytes such as glucosylglycerol. The activation of the enzymes involved in glucosylglycerol synthesis [glucosylglycerol-phosphate synthase (GGPS) and glucosylglycerol-phosphate phosphatase (GGPP)] in Synechocystis sp. strain PCC 6803 by various salts and salt concentrations was investigated in vitro. GGPS seemed to be the target for salt-mediated regulation of glucosylglycerol synthesis in vitro. GGPS activation was dependent on the concentration of NaCl, and a sigmoidal plot was obtained. Sensitivity to NaCl was markedly enhanced by low Mg+2 concentrations (optimal at 4 mM), but Mg2+ was not absolutely necessary for the Na+ stimulation. As in the case of NaCl, other salts (including MgCl2) stimulated GGPS. The relative order of GGPS activation in the presence of chloride by the cations at constant ionic strength was Li+ 〉 Na+ 〉 K+, Mg2+ Mn2+. No absolute dependence on ionic strength was observed in Mg2+/Na+-exchange experiments. The degree of activation by ions at various concentrations was positively related to the increasing destabilizing properties of the cations according to the Hofmeister rule, where chaotropic cations are most efficient. Cations were responsible for activation since chaotropic anions counteracted the activating effect of cations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-072X
    Keywords: Key words Cyanobacteria ; Glucosylglycerol-phosphate ; Osmoprotective compounds ; Random ; cartridge mutagenesis ; Salt adaptation ; StpA protein ; Synechocystis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Salt-sensitive mutants of Synechocystis were obtained by random cartridge mutagenesis, and one mutant (mutant 4) was characterized in detail. The salt tolerance of mutant 4 was reduced to about 20% of that of the wild-type. This was caused by a defect in the biosynthetic pathway of the osmoprotective compound glucosylglycerol (GG). Salt-treated cells of mutant 4 accumulated the intermediate glucosylglycerol-phosphate (GG-P). Only low levels of phosphate-free GG were detected. The phosphorylated form of GG was not osmoprotective and seemed to be toxic. In vitro enzyme assays revealed that GG-P-phosphatase activity was completely absent in mutant 4, while GG-P-synthase remained unchanged. The integration site of the aphII cartridge in mutant 4 and the corresponding wild-type region was cloned and sequenced. Mutant 4 was complemented to salt resistance after transformation by the cloned wild-type region. The integration of the cartridge led to a deletion of about 1.1 kb of the chromosomal DNA. This affected two of the identified putative protein coding regions, orfII and stpA. The ORFII protein shows a high degree of similarity to the receiver domain of response regulator proteins. Related sequences were not found for StpA. We assume that in mutant 4, regulatory genes necessary for the process of salt adaptation in Synechocystis are impaired.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Key words Chaperone ; Cyanobacteria ; groEL ; isiA ; RNA helicase ; Salt stress ; Subtractive RNA ¶hybridization ; Synechocystis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To identify genes transcribed preferentially under salt stress, a subtractive RNA hybridization procedure was applied to the cyanobacterium Synechocystis sp. PCC 6803. The screening of a genomic library led to the identification of several RNA species that were more abundant in salt-stressed cells than in control cells. Salt-dependent transcription of the identified genes was verified in Northern blot experiments. In addition to the previously characterized genes cpn60 (encoding GroEL; a molecular chaperone) and isiA (encoding a chlorophyll-binding protein), genes encoding a protein of unknown function (slr0082) and a putative RNA helicase (slr0083) were identified as salt-regulated genes in Synechocystis. Genes slr0082 and slr0083, located at sites adjacent to each other on the Synechocystis chromosome, were transcribed from separate promoters and showed the most significant induction 1–3 h after salt shock. The salt-regulated promoters of these two genes were mapped. Genes cpn60, slr0082, and slr0083 were also found to be induced by a cold shock. The possible role of the identified gene products for salt adaptation of Synechocystis is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...