ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Subarctic Pacific  (1)
  • Sulfur cycle  (1)
  • 2010-2014  (2)
Collection
Keywords
Years
  • 2010-2014  (2)
Year
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth and Planetary Science Letters 396 (2014): 14-21, doi:10.1016/j.epsl.2014.03.057.
    Description: We present 28 multiple sulfur isotope measurements of seawater sulfate (δ34SSO4δ34SSO4 and Δ33SSO4Δ33SSO4) from the modern ocean over a range of water depths and sites along the eastern margin of the Pacific Ocean. The average measured δ34SSO4δ34SSO4 is 21.24‰ (±0.88‰,2σ±0.88‰,2σ) with a calculated Δ33SSO4Δ33SSO4 of +0.050‰+0.050‰ (±0.014‰,2σ±0.014‰,2σ). With these values, we use a box-model to place constraints on the gross fraction of pyrite burial in modern sediments. This model presents an improvement on previous estimates of the global pyrite burial flux because it does not rely on the assumed value of δ34Spyriteδ34Spyrite, which is poorly constrained, but instead uses new information about the relationship between δ34Sδ34S and δ33Sδ33S in global marine sulfate. Our calculations indicate that the pyrite burial flux from the modern ocean is between 10% and 45% of the total sulfur lost from the oceans, with a more probable range between 20% and 35%.
    Description: RT acknowledges financial support from NERC Grant NE/I00596X/1. Support was provided through NERC grant NE/H011595/1 to AVT. AVT acknowledges financial support from the ERC Starting Investigator Grant 307582. JF acknowledges support from the NASA Astrobiology Institute.
    Keywords: Sulfur isotopes ; Multiple sulfur isotopes ; Pyrite flux ; Sulfur cycle ; Sulfate reduction ; Biogeochemical cycles
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 20 (2006): GB1006, doi:10.1029/2005GB002557.
    Description: Heightened biological activity was observed in February 1996 in the high-nutrient low-chlorophyll (HNLC) subarctic North Pacific Ocean, a region that is thought to be iron-limited. Here we provide evidence supporting the hypothesis that Ocean Station Papa (OSP) in the subarctic Pacific received a lateral supply of particulate iron from the continental margin off the Aleutian Islands in the winter, coincident with the observed biological bloom. Synchrotron X-ray analysis was used to describe the physical form, chemistry, and depth distributions of iron in size fractionated particulate matter samples. The analysis reveals that discrete micron-sized iron-rich hot spots are ubiquitous in the upper 200 m at OSP, more than 900 km from the closest coast. The specifics of the chemistry and depth profiles of the Fe hot spots trace them to the continental margins. We thus hypothesize that iron hot spots are a marker for the delivery of iron from the continental margin. We confirm the delivery of continental margin iron to the open ocean using an ocean general circulation model with an iron-like tracer source at the continental margin. We suggest that iron from the continental margin stimulated a wintertime phytoplankton bloom, partially relieving the HNLC condition.
    Description: This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (KP1202030) to J. K. B and by NSFATM-9987457 to I. F. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at Lawrence Berkeley National Laboratory under contract DE-AC03-76SF00098.
    Keywords: Iron ; Continental margin ; HNLC ; Subarctic Pacific
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: image/tiff
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...