ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 242-246 
    ISSN: 1432-0789
    Keywords: Soil respiration ; Soil water ; Substrate-induced respiration ; CO2 evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary We studied the effects of amending soils with different volumes of water or glucose solution on respiration rates measured as CO2 evolution. Basal respiration was not significantly affected by the volume of water amendment, but substrate-induced respiration in static soil solutions was significantly reduced by increasing water contents. Inhibition of substrate-induced respiration was removed by continuously agitating the incubation vessels. Estimates of substrate-induced respiration rates for six soils differed markedly, depending on whether the vessels were stationary or agitated during the incubation. Agitation allowed increased discrimination between substrate-induced respiration rates for the soils, while static incubation only differentiated the soil with the highest substrate-induced respiration rate from the other soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 12 (1992), S. 265-271 
    ISSN: 1432-0789
    Keywords: Dehydrogenase activity ; Microbial biomass C ; Microbial biomass N ; N fertisisation ; C additions ; Soil respiration ; Solanum tuberosum L. ; Substrate-induced respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A range of soil microbiological parameters were measured at intervals throughout the growing season of a potato crop. Treatments applied to the soil at sowing were zero N fertilisation of N fertilisation at 120 kg N ha−1, either alone or supplemented with straw or sucrose at 1200 kg C ha−1. C and N flushes determined by fumigation-incubation and fumigation-extraction, and substrate-induced respiration, were measured as indicators of microbial biomass. Microbial activity was measured as respiration (CO2 production) and dehydrogenase activity (formazan production). The greatest effects were obtained from the addition of N plus sucrose. Both biomass size and activity were significantly stimulated for up to 25 days after incorporation, with the magnitude of the effects consistently diminishing over time. By 125 days after planting, there was no detectable legacy from any of the treatmentson any of the biomass parameters that were measured, and all values had reverted to those prevalent at planting. There was no consistent effect from adding N, either alone or supplemented with straw, on any of the biomass parameters. There was no evidence for crop-induced stimulation of the biomass. The experiment demonstrates that biomass is only influenced where the quantity, quality, and rate of incorporation of C into the soil is appropriate, in this case, only by adding C as a pulse of sucrose.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 95-96 
    ISSN: 1432-0789
    Keywords: Soil respiration ; Substrate-induced respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Freezing was investigated as a means of preserving samples in soil respiration studies. Concentrations of CO2 in the headspaces of incubation bottles before and after freezing, and respiration rates derived from fresh or frozen samples were not significantly different over periods of up to 30 days. Freezing permits many samples to be assayed for respiratory activity at one time, increases the accuracy of the incubation period and defers the need to analyse headspace concentrations of CO2 until it is convenient.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...