ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Geology 385 (2017): 114-130, doi:10.1016/j.margeo.2016.10.007.
    Description: Multiple styles of failure, ranging from densely spaced, mass transport driven canyons to the large, slab-type slope failure of the Currituck Slide, characterize adjacent sections of the central U.S. Atlantic margin that appear to be defined by variations in geologic framework. Here we use regionally extensive, deep penetration multichannel seismic (MCS) profiles to reconstruct the influence of the antecedent margin physiography on sediment accumulation along the central U.S. Atlantic continental shelf-edge, slope, and uppermost rise from the Miocene to Present. These data are combined with highresolution sparker MCS reflection profiles and multibeam bathymetry data across the Currituck Slide complex. Pre-Neogene allostratigraphic horizons beneath the slope are generally characterized by low gradients and convex downslope profiles. This is followed by the development of thick, prograded deltaic clinoforms during the middle Miocene. Along-strike variations in morphology of a regional unconformity at the top of this middle Miocene unit appear to have set the stage for differing styles of mass transport along the margin. Areas north and south of the Currituck Slide are characterized by oblique margin morphology, defined by an angular shelf-edge and a relatively steep (〉8°), concave slope profile. Upper slope sediment bypass, closely spaced submarine canyons, and small, localized landslides confined to canyon heads and sidewalls characterize these sectors of the margin. In contrast, the Currituck region is defined by a sigmoidal geometry, with a rounded shelf-edge rollover and gentler slope gradient (〈6°). Thick (〉800 m), regionally continuous stratified slope deposits suggest the low gradient Currituck region was a primary depocenter for fluvial inputs during multiple sea level lowstands. These results imply that the rounded, gentle slope physiography developed during the middle Miocene allowed for a relatively high rate of subsequent sediment accumulation, thus providing a mechanism for compaction–induced overpressure that preconditioned the Currituck region for failure. Detailed examination of the regional geological framework illustrates the importance of both sediment supply and antecedent slope physiography in the development of large, potentially unstable depocenters along passive margins.
    Description: The U.S. Geological Survey, the U.S. Nuclear Regulatory Commission and Coastal Carolina University funded this research.
    Keywords: Submarine landslides ; Multichannel seismic data ; U.S. Atlantic margin ; Geomorphology ; Unconformity ; Sediment supply ; Stratigraphy ; Isopach maps ; Slope gradient ; Accommodation space
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 353 (2014): 31-54, doi:10.1016/j.margeo.2014.02.011.
    Description: Tsunami hazard is a very low-probability, but potentially high-risk natural hazard, posing unique challenges to scientists and policy makers trying to mitigate its impacts. These challenges are illustrated in this assessment of tsunami hazard to the U.S. Atlantic margin. Seismic activity along the U.S. Atlantic margin in general is low, and confirmed paleo-tsunami deposits have not yet been found, suggesting a very low rate of hazard. However, the devastating 1929 Grand Banks tsunami along the Atlantic margin of Canada shows that these events continue to occur. Densely populated areas, extensive industrial and port facilities, and the presence of ten nuclear power plants along the coast, make this region highly vulnerable to flooding by tsunamis and therefore even low-probability events need to be evaluated. We can presently draw several tentative conclusions regarding tsunami hazard to the U.S. Atlantic coast. Landslide tsunamis likely constitute the biggest tsunami hazard to the coast. Only a small number of landslides have so far been dated and they are generally older than 10,000 years. The geographical distribution of landslides along the margin is expected to be uneven and to depend on the distribution of seismic activity along the margin and on the geographical distribution of Pleistocene sediment. We do not see evidence that gas hydrate dissociation contributes to the generation of landslides along the U.S. Atlantic margin. Analysis of landslide statistics along the fluvial and glacial portions of the margin indicate that most of the landslides are translational, were probably initiated by seismic acceleration, and failed as aggregate slope failures. How tsunamis are generated from aggregate landslides remains however, unclear. Estimates of the recurrence interval of earthquakes along the continental slope may provide maximum estimates for the recurrence interval of landslide along the margin. Tsunamis caused by atmospheric disturbances and by coastal earthquakes may be more frequent than those generated by landslides, but their amplitudes are probably smaller. Among the possible far-field earthquake sources, only earthquakes located within the Gulf of Cadiz or west of the Tore-Madeira Rise are likely to affect the U.S. coast. It is questionable whether earthquakes on the Puerto Rico Trench are capable of producing a large enough tsunami that will affect the U.S. Atlantic coast. More information is needed to evaluate the seismic potential of the northern Cuba fold-and-thrust belt. The hazard from a volcano flank collapse in the Canary Islands is likely smaller than originally stated, and there is not enough information to evaluate the magnitude and frequency of flank collapse from the Azores Islands. Both deterministic and probabilistic methods to evaluate the tsunami hazard from the margin are available for application to the Atlantic margin, but their implementation requires more information than is currently available.
    Description: The work was funded by the U.S.-NRC Job Code V6166: Tsunami Landslide Source Probability and Potential Impact on New and Existing Power Plants.
    Keywords: Submarine landslides ; Meteo-tsunami ; Earthquakes and landslides ; Probabilistic hazard assessment
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...