ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 51 (1992), S. 195-201 
    ISSN: 1432-0827
    Keywords: Marrow stroma ; Stromal cell lines ; Osteoblasts ; Cytokines ; MBA-15
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary Osteoblasts, members of the marrow stromal cellular network, may play an active role in the hemopoietic microenvironment as well as in bone remodeling. In this study, we examined the extent to which marrow-derived osteogenic cells (MBA-15) possess various stromal functions. This marrow stromal-derived cell line was shown by us to exhibit osteoblastic characteristics in culture and to form bone in vivo. These cells are shown here to constitutively produce and secrete cytokines identified as M-CSF, GM-CSF, and IL-6. MBA-15 cells modulate growth of normal and malignant myeloid and lymphoid cells as well as leukemia cell lines in vitro. Cell-cell interactions were studied in co-cultures with adherent MBA-15 cells and the target hemopoietic cells. Growth inhibition effects, observed under various experimental conditions, can be attributed to the presence of different soluble and membrane-bound inhibitory activities produced by MBA-15 cells. Thus, MBA-15 cells spontaneously produce both stimulators and inhibitors that can affect myeloid and lymphoid cell growth. Marrow osteogenic cells may therefore participate in the stromal regulation of hemopoiesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 59 (1995), S. 151-160 
    ISSN: 0730-2312
    Keywords: stromal cells ; osteoblasts ; attachment ; bone matrix ; bone formation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In this study, we report on the cell adhesion properties of marrow stromal cells to extracellular matrix components such as collagen and noncollagenous proteins. The osteoblastic cells and their non-osteoblastic counter-parts (MBA series) from the marrow stroma differentially recognized a spectrum of extracellular matrix proteins. The osteoblastic cells, MBA-15, preferentially attached to bone matrix proteins, whereas fibroendothelial MBA-2.1 and adipocytic 14F1.1 cells did not. The MBA-15 cells demonstrated a preference in their attachment to fibronectin 〉 mixture of collagens 〉 bone matrix extracts 〉 collagen type 1 〉 noncollagenous proteins. Clonal subpopulations derived from the MBA-15 cell line representing various stages along the osteogenic lineage expressed differential attachment preference. MBA-15.4, a less differentiated clonal line, was compared to MBA-15.6, a mature cell line. © 1995 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 81-86 
    ISSN: 0730-2312
    Keywords: cell communication ; osteoblasts ; stromal cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We characterized the formation and regulation of the gap junction in calvarial osteoblasts and in a series of subtypes from marrow stromal cells. The stromal cells included osteogenic, chondro-osteogenic, and endothelial cells. The cell coupling was measured by using fluorescence dye injected into single cells, and its migration to neighboring cells was measured. The functional coupling of cells was highly expressed by the osteoblastic cells. This process is mediated through fast changes in intracellular Ca+2 levels. Calcium ionophore (A 23187) demonstrated an uncoupling effect on the cells. In addition, the exposure of the cells to the parathyroid hormone increased the formation of the gap junction complex; the highest level was demonstrated in the osteoblastic cells. J. Cell. Biochem. 69:81-86, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...