ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-12
    Description: The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.
    Keywords: Spacecraft Propulsion and Power
    Type: Fifth International Symposium on Liquid Space Propulsion; NASA/CP-2005-213607
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: System Design, Development, and Fabrication: Design, develop, and fabricate or procure MB-60 component hardware compliant with the imposed technical requirements and in sufficient quantities to fulfill the overall MB-60 development effort. System Development, Assembly, and Test: Manage the scope of the development, assembly, and test-related activities for MB-60 development. This scope includes engine-level development planning, engine assembly and disassembly, test planning, engine testing, inspection, anomaly resolution, and development of necessary ground support equipment and special test equipment. System Integration: Provide coordinated integration in the realms of engineering, safety, quality, and manufacturing disciplines across the scope of the MB-60 design and associated products development Safety and Mission Assurance, structural design, fracture control, materials and processes, thermal analysis. Systems Engineering and Analysis: Manage and perform Systems Engineering and Analysis to provide rigor and structure to the overall design and development effort for the MB-60. Milestone reviews, requirements management, system analysis, program management support Program Management: Manage, plan, and coordinate the activities across all portions of the MB-60 work scope by providing direction for program administration, business management, and supplier management.
    Keywords: Spacecraft Propulsion and Power
    Type: M13-2599 , JAXA Internal Meeting; Apr 22, 2013 - Apr 23, 2013; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M13-2933
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: This document defines the objectives related to liquid rocket engine system development to be undertaken by JAXA in support of the Space Launch System (SLS) Program managed out of the NASA Marshall Space Flight Center (MSFC). These objectives include furnishing the necessary management, labor, facilities, tools, equipment, and materials required to execute the specified activities. 1.1 Project Scope: The scope of this effort is to develop a rocket engine and associated products per the objectives and technical requirements established in this document. This engine, minus the engine controller, designated here as MB ]60, is to be developed through to a prequalification point of maturity. It is assumed that should JCNE ]1 development proceed beyond this maturity point towards actual flight qualification, the engine controller will be supplied and integrated by NASA. 1.2 Document Structure: The structure of this Consolidated Development Objectives Document (CDOD) includes a traditional description of objectives in a SOO, plus the associated Data Products Document (DPD) in an attached appendix, and then Engine Requirements Document (ERD) as another attached appendix. It is the intent that this document, in conjunction with the cited applicable documents, should constitute a complete programmatic and technical description of the development effort to be pursued.
    Keywords: Spacecraft Propulsion and Power
    Type: M13-2598
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: The J-2X program calls for the upgrade of the Apollo-era Rocketdyne J-2 engine to higher power levels, using new materials and manufacturing techniques, and with more restrictive safety and reliability requirements than prior human-rated engines in NASA history. Such requirements demand a comprehensive systems engineering effort to ensure success. Pratt & Whitney Rocketdyne system engineers performed a functional analysis of the engine to establish the functional architecture. J-2X functions were captured in six major operational blocks. Each block was divided into sub-blocks or states. In each sub-block, functions necessary to perform each state were determined. A functional engine schematic consistent with the fidelity of the system model was defined for this analysis. The blocks, sub-blocks, and functions were sequentially numbered to differentiate the states in which the function were performed and to indicate the sequence of events. The Engine System was functionally partitioned, to provide separate and unique functional operators. Establishing unique functional operators as work output of the System Architecture process is novel in Liquid Propulsion Engine design. Each functional operator was described such that its unique functionality was identified. The decomposed functions were then allocated to the functional operators both of which were the inputs to the subsystem or component performance specifications. PWR also used a novel approach to identify and map the engine functional requirements to customer-specified functions. The final result was a comprehensive Functional Flow Block Diagram (FFBD) for the J-2X Engine System, decomposed to the component level and mapped to all functional requirements. This FFBD greatly facilitates component specification development, providing a well-defined trade space for functional trades at the subsystem and component level. It also provides a framework for function-based failure modes and effects analysis (FMEA), and a rigorous baseline for the functional architecture.
    Keywords: Spacecraft Propulsion and Power
    Type: JANNAF Interagency Propulsion Conference; May 14, 2007 - May 17, 2007; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-24
    Description: A dual expander cycle (DEC) rocket engine with an intermediate closed-cycle heat exchanger is provided. A conventional DEC rocket engine has a closed-cycle heat exchanger thermally coupled thereto. The heat exchanger utilizes heat extracted from the engine's fuel circuit to drive the engine's oxidizer turbomachinery.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: The United States (U.S.) Vision for Space Exploration has directed NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020 by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage (EDS). This decision was reached during the Exploration Systems Architecture Study and confirmed after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by testing existing engine hardware and designs; building on the Apollo Program (1961 to 1975), the Space Shuttle Program (1972 to 2010); and consulting with Apollo era experts to derive other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.
    Keywords: Spacecraft Propulsion and Power
    Type: 54th Joint JANNAF Propulsion Meeting; May 14, 2007 - May 17, 2007; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-13
    Description: The proposed technology is a rocket engine cycle utilizing as the propulsive fluid a low molecular weight, cryogenic fluid, typically liquid hydrogen, pressure driven, heated, and expelled through a nozzle to generate high velocity and high specific impulse discharge gas. The proposed technology feeds the propellant through the engine cycle without the use of a separate pressurization fluid and without the use of turbomachinery. Advantages of the proposed technology are found in those elements of state-of-the-art systems that it avoids. It does not require a separate pressurization fluid or a thick-walled primary propellant tank as is typically required for a classical pressure-fed system. Further, it does not require the acceptance of intrinsic reliability risks associated with the use of turbomachinery
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-28
    Description: An augmented expander cycle rocket engine includes first and second turbopumps for respectively pumping fuel and oxidizer. A gas-generator receives a first portion of fuel output from the first turbopump and a first portion of oxidizer output from the second turbopump to ignite and discharge heated gas. A heat exchanger close-coupled to the gas-generator receives in a first conduit the discharged heated gas, and transfers heat to an adjacent second conduit carrying fuel exiting the cooling passages of a primary combustion chamber. Heat is transferred to the fuel passing through the cooling passages. The heated fuel enters the second conduit of the heat exchanger to absorb more heat from the first conduit, and then flows to drive a turbine of one or both of the turbopumps. The arrangement prevents the turbopumps exposure to combusted gas that could freeze in the turbomachinery and cause catastrophic failure upon attempted engine restart.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: STS-104, launched July 2001, marked the first flight of a single Block 2 Space Shuttle Main Engine (SSME). This new configuration of the SSME is the culmination of well over a decade of gradual engine system upgrades. The launch and mission were a success. However, in the process of post-launch data analysis a Main Propulsion System (MPS) anomaly was noted and tied directly to the shutdown of the Block 2 SSME. An investigation into this anomaly was organized across NASA facilities and across the various hardware component contractors. This paper is a very brief summary of the eventual understanding of the root causes of the anomaly and the process whereby an appropriate mitigation action was proposed. An analytical model of the High Pressure Fuel Pump (HPFP) and the low pressure fuel system of the SSME is presented to facilitate the presentation of this summary. The proposed mitigation action is discussed and, with the launch of STS-108 in November 2001, successfully demonstrated under flight conditions.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Paper 2002-3581 , 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 07, 2002 - Jul 10, 2002; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...