ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-13
    Description: The J-2X engine, a liquid oxygen/liquid hydrogen propellant rocket engine available for future use on the upper stage of the Space Launch System vehicle, has completed testing of three developmental engines at NASA Stennis Space Center. Twenty-one tests of engine E10001 were conducted from June 2011 through September 2012, thirteen tests of the engine E10002 were conducted from February 2013 through September 2013, and twelve tests of engine E10003 were conducted from November 2013 to April 2014. Verification of combustion stability of the thrust chamber assembly was conducted by perturbing each of the three developmental engines. The primary mechanism for combustion stability verification was examining the response caused by an artificial perturbation (bomb) in the main combustion chamber, i.e., dynamic combustion stability rating. No dynamic instabilities were observed in the TCA, although a few conditions were not bombed. Additional requirements, included to guard against spontaneous instability or rough combustion, were also investigated. Under certain conditions, discrete responses were observed in the dynamic pressure data. The discrete responses were of low amplitude and posed minimal risk to safe engine operability. Rough combustion analyses showed that all three engines met requirements for broad-banded frequency oscillations. Start and shutdown transient chug oscillations were also examined to assess the overall stability characteristics, with no major issues observed.
    Keywords: Spacecraft Propulsion and Power
    Type: M15-4338 , Liquid Propulsion Subcommittee; Jun 01, 2015 - Jun 05, 2015; Nashville, TN; United States|Modeling and Simulation Subcommittee; Jun 01, 2015 - Jun 05, 2015; Nashville, TN; United States|JANNAF Propulsion Meeting; Jun 01, 2015 - Jun 05, 2015; Nashville, TN; United States|Spacecraft Propulsion Subcommittee; Jun 01, 2015 - Jun 05, 2015; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-13
    Description: The Combustion Stability Tool Development (CSTD) project, funded by the Air Force Space and Missile Systems Center, began in March 2015 supporting a renewed interest in the development of a liquid oxygen/hydrocarbon, oxygen-rich combustion engine. The project encompasses the design, assembly, and hot-fire testing of the NASA Marshall Space Flight Center 40-klbf Integrated Test Rig (MITR). The test rig models a staged-combustion configuration by combining an oxygen-rich preburner (ORPB), to generate hot gas, with a thrust chamber assembly (TCA) using gas-centered swirl coaxial injector elements. There are five separately designed interchangeable injectors in the TCA that each contain 19- or 27- injector elements. A companion paper in this JANNAF conference describes the design characteristics, rationale, and fabrication issues for all the injectors. The data acquired from a heavily instrumented rig encompasses several injectors, several operating points, and stability bomb tests. Another companion paper in this JANNAF conference describes this test program in detail. In this paper, dynamic data from the hot-fire testing is characterized and used to identify the responses in the ORPB and TCA. A brief review of damping metrics are discussed and applied as a measure of stability margin for damped acoustic modes. Chug and longitudinal combustion stability models and predictions are described which includes new dynamic models for compressible flow through an orifice and a modification to incorporate a third feed line for inclusion of the fuel-film coolant. Flow-acoustics finite element modeling is used to investigate the anticipated TCA acoustics, the effects of injector element length on stability margin, and the potential use of an ORPB orifice trip ring for improving longitudinal stability margin.
    Keywords: Spacecraft Propulsion and Power
    Type: M16-5383 , JANNAF Joint Subcommittee Meeting; Dec 05, 2016 - Dec 09, 2016; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-13
    Description: In 2015 and 2016, the National Aeronautics and Space Administration Marshall Space Flight Center designed, fabricated, assembled and hot-fire tested an oxygen/RP-1 propellant multi-element oxidizer-rich staged-combustion test article. The main objective was to provide thrust chamber combustion stability data as part of the Combustion Stability Tool Development program, although demonstration of performance and compatibility of oxidizer-rich main injectors was also important. Funding was provided by the Air Force Space and Missile Systems Center. Five configurations of main injectors were designed and fabricated, using conventional gas-centered swirl coaxial injector element designs generally similar to those used in oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines. Variations of element features included element size, recess depth, fuel gap width, and the presence of the sleeve separating the swirling fuel flow from the axial oxidizer flow. Ablative combustion chambers were fabricated based on hardware previously used at the NASA MSFC for testing at similar size and pressure. Existing oxygen/RP-1 oxidizer-rich subscale preburner injectors and hot gas ducts from a previous NASA-funded program were modified for use to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. Testing of the resulting integrated test article - which included the preburner, inter-connecting hot gas duct, main injector, and ablative combustion chamber - was conducted at Test Stand 116 at the East Test Area of the NASA MSFC. The test article was well instrumented with static and dynamic pressure, temperature, and vibration sensors. This paper presents and discusses all the hot-fire test results of the integrated test article thrust chamber. Eighteen successful hot-fire tests of the integrated rig were conducted. Testing was accomplished with all five of the injector element concepts. Main combustion chamber pressures ranged from 710 to 2350 psia, and main combustion chamber mixture ratios ranged from 2.47 to 2.87. A chamber barrier fuel film coolant of about 2% to 4% of the total fuel flow was used for most tests. Characteristic exhaust velocity efficiency excluding the influence of the fuel film cooling ranged from 91% to 98% of theoretical. All tests of the thrust chamber exhibited stable combustion, even down to 40% of nominal operating pressures. Compatibility of the injector face and combustion chamber walls was acceptable. This paper is a follow-on to publication of preliminary test data presented at the 2016 JANNAF Liquid Propulsion Subcommittee meeting.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6362 , Liquid Propulsion (LPS); May 21, 2018 - May 24, 2018; Long Beach, VA; United States|Spacecraft Propulsion (SPS); May 21, 2018 - May 24, 2018; Long Beach, CA; United States|JANNAF Propulsion Meeting (JPM); May 21, 2018 - May 24, 2018; Long Beach, CA; United States|Modeling and Simulation (MSS); May 21, 2018 - May 24, 2018; Long Beach, CA; United States|Programmatic Industrial Base (PIB); May 21, 2018 - May 24, 2018; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. For the thrust chamber assembly of the test article, several configurations of new main injectors, using relatively conventional gas-centered swirl coaxial injector elements, were designed and fabricated. The design and fabrication of these main injectors are described in a companion paper at this JANNAF meeting. New ablative combustion chambers were fabricated based on hardware previously used at NASA for testing at similar size and pressure. An existing oxygen/RP-1 oxidizer-rich subscale preburner injector from a previous NASA-funded program, along with existing and new inter-connecting hot gas duct hardware, were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. Results from independent hot-fire tests of the preburner injector in a combustion chamber with a sonic throat are described in companion papers at this JANNAF conference. The resulting integrated test article - which includes the preburner, inter-connecting hot gas duct, main injector, and ablative combustion chamber - was assembled at Test Stand 116 at the East Test Area of the NASA Marshall Space Flight Center. The test article was well instrumented with static and dynamic pressure, temperature, and acceleration sensors to allow the collected data to be used for combustion analysis model development. Hot-fire testing was conducted with main combustion chamber pressures ranging from 1400 to 2100 psia, and main combustion chamber mixture ratios ranging from 2.4 to 2.9. Different levels of fuel film cooling injected from the injector face were examined ranging from none to about 12% of the total fuel flow. This paper presents the hot-fire test results of the integrated test article. Combustion performance, stability, thermal, and compatibility characteristics of both the preburner and the thrust chamber are described. Another companion paper at this JANNAF meeting includes additional and more detailed test data regarding the combustion dynamics and stability characteristics.
    Keywords: Spacecraft Propulsion and Power
    Type: M16-5374 , Liquid Propulsion Subcommittee (LPS) Meeting; Dec 05, 2016 - Dec 09, 2016; Phoenix, AZ; United States|Spacecraft Propulsion Subcommittee (SPS) Meeting; Dec 05, 2016 - Dec 09, 2016; Phoenix, AZ; United States|Modeling and Simulation Subcommittee (MSS) Meeting; Dec 05, 2016 - Dec 09, 2016; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. To supply the oxidizer-rich combustion products to the main injector of the integrated test article, existing subscale preburner injectors from a previous NASA-funded oxidizer-rich staged combustion engine development program were utilized. For the integrated test article, existing and newly designed and fabricated inter-connecting hot gas duct hardware were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. However, before one of the preburners was used in the integrated test article, it was first hot-fire tested at length to prove it could provide the hot exhaust gas mean temperature, thermal uniformity and combustion stability necessary to perform in the integrated test article experiment. This paper presents results from hot-fire testing of several preburner injectors in a representative combustion chamber with a sonic throat. Hydraulic, combustion performance, exhaust gas thermal uniformity, and combustion stability data are presented. Results from combustion stability modeling of these test results are described in a companion paper at this JANNAF conference, while hot-fire test results of the preburner injector in the integrated test article are described in another companion paper.
    Keywords: Spacecraft Propulsion and Power
    Type: M16-5391 , Spacecraft Propulsion Subcommittee (SPS) Meeting; Dec 05, 2016 - Dec 09, 2016; Phoenix, AZ; United States|Modeling and Simulation Subcommittee (MSS) Meeting; Dec 05, 2016 - Dec 09, 2016; Phoenix, AZ; United States|Liquid Propulsion Subcommittee (LPS) Meeting; Dec 05, 2016 - Dec 09, 2016; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: Current shortcomings in both the overall injector design process and its underlying combustion stability assessment methodology are rooted in the use of empirically based or low fidelity representations of complex physical phenomena and geometry details that have first order effects on performance, thermal environments and combustion stability. The result is a design and analysis capability that is often inadequate to reliably arrive at a suitable injector design in an efficient manner. Specifically, combustion instability has been particularly difficult to predict and mitigate. Large hydrocarbon-fueled booster engines have been especially problematic in this regard. Where combustion instability has been a problem, costly and time-consuming redesign efforts have often been an unfortunate consequence. This paper presents an overview of a recently completed effort at NASA Marshall Space Flight Center to advance the state-of-the-practice for liquid rocket engine injector design. Multiple perturbations of a gas-centered swirl coaxial (GCSC) element that burned gaseous oxygen and RP-1 were designed, assessed for combustion stability, and tested. Three designs, one stable, one marginally unstable and one unstable, were used to demonstrate both an enhanced overall injector design process and an improved combustion stability assessment process. High-fidelity results from state-of-the-art computational fluid dynamics CFD simulations were used to substantially augment and improve the injector design methodology. The CFD results were used to inform and guide the overall injector design process. They were also used to upgrade selected empirical or low-dimensional quantities in the ROCket Combustor Interactive Design (ROCCID) stability assessment tool. Hot fire single element injector testing was used to verify both the overall injector designs and the stability assessments. Testing was conducted at the Air Force Research Laboratory and at Purdue University. Companion papers provide details of the overall injector design process, full- and sub-scale testing, ROCCID-based stability assessments and the CFD simulations.
    Keywords: Spacecraft Propulsion and Power
    Type: M15-4313 , JANNAF Joint Propulsion Meeting; Jun 01, 2015 - Jun 05, 2015; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. On the current project, several configurations of new main injectors were considered for the thrust chamber assembly of the integrated test article. All the injector elements were of the gas-centered swirl coaxial type, similar to those used on the Russian oxidizer-rich staged-combustion rocket engines. In such elements, oxidizer-rich combustion products from the preburner/turbine exhaust flow through a straight tube, and fuel exiting from the combustion chamber and nozzle regenerative cooling circuits is injected near the exit of the oxidizer tube through tangentially oriented orifices that impart a swirl motion such that the fuel flows along the wall of the oxidizer tube in a thin film. In some elements there is an orifice at the inlet to the oxidizer tube, and in some elements there is a sleeve or "shield" inside the oxidizer tube where the fuel enters. In the current project, several variations of element geometries were created, including element size (i.e., number of elements or pattern density), the distance from the exit of the sleeve to the injector face, the width of the gap between the oxidizer tube inner wall and the outer wall of the sleeve, and excluding the sleeve entirely. This paper discusses the design rationale for each of these element variations, including hydraulic, structural, thermal, combustion performance, and combustion stability considerations. This paper also discusses the fabrication and assembly of the injector components, including the injector body/interpropellant plate, the additive manufactured GRCop-84 faceplate, and the pieces that make up the injector elements including the oxidizer tube, an inlet to the oxidizer tube, and a facenut that includes the fuel tangential inlets and forms the initial recessed volume where oxidizer and fuel first interact. Hot-fire test results of these main injector designs in an integrated test article that includes an oxidizer-rich preburner are described in companion papers at this JANNAF meeting.
    Keywords: Spacecraft Propulsion and Power
    Type: M16-5390 , JANNAF Joint Subcommittee Meeting; Dec 05, 2016 - Dec 09, 2016; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-11-27
    Description: Final document is attached. Status and preliminary results for the development of a large format fractional thermal runaway calorimeter (L-FTRC) capable of measuring the total energy release and fractional energy release for Li-ion cells that have greater than 100 Ah capacities.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-E-DAA-TN75665 , NASA Aerospace Battery Workshop; Nov 19, 2019 - Nov 21, 2019; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-10
    Description: Uncertainty in erosion rates as measured by different methods is discussed and quantified. The work focuses on case studies from components on the Hall Effect Rocket with Magnetic Shielding (HERMeS) Hall thruster, but the methods can be extended for many electric propulsion applications. The primary method used for evaluating erosion is non-contact profilometry of masked and exposed components. Accurate quantification of the erosion rates of components is critical to determining lifetime and is therefore critical to mission planning purposes.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN70751 , AIAA Propulsion and Energy Forum and Exposition; Aug 19, 2019 - Aug 22, 2019; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M15-4732 , International Electric Propulsion; Jul 04, 2015 - Jul 10, 2015; Kobe; Japan|Nano-Satellite Symposium; Jul 04, 2015 - Jul 10, 2015; Kobe; Japan|Joint Conference of International Symposium on Space Technology and Science; Jul 04, 2015 - Jul 10, 2015; Kobe; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...