ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: The superior energy density of antimatter annihilation has often been pointed to as the ultimate source of energy for propulsion. However, the limited capacity and very low efficiency of present-day antiproton production methods suggest that antimatter may be too costly to consider for near-term propulsion applications. We address this issue by assessing the antimatter requirements for six different types of propulsion concepts, including two in which antiprotons are used to drive energy release from combined fission/fusion. These requirements are compared against the capacity of both the current antimatter production infrastructure and the improved capabilities that could exist within the early part of next century. Results show that although it may be impractical to consider systems that rely on antimatter as the sole source of propulsive energy, the requirements for propulsion based on antimatter-assisted fission/fusion do fall within projected near-term production capabilities. In fact, a new facility designed solely for antiproton production but based on existing technology could feasibly support interstellar precursor missions and omniplanetary spaceflight with antimatter costs ranging up to $6.4 million per mission.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Magnetized target fusion is an approach in which a magnetized target plasma is compressed inertially by an imploding material wall. A high energy plasma liner may be used to produce the required implosion. The plasma liner is formed by the merging of a number of high momentum plasma jets converging towards the center of a sphere where two compact toroids have been introduced. Preliminary 3-D hydrodynamics modeling results using the SPHINX code of Los Alamos National Laboratory have been very encouraging and confirm earlier theoretical expectations. The concept appears ready for experimental exploration and plans for doing so are being pursued. In this talk, we explore conceptually how this innovative fusion approach could be packaged for space propulsion for interplanetary travel. We discuss the generally generic components of a baseline propulsion concept including the fusion engine, high velocity plasma accelerators, generators of compact toroids using conical theta pinches, magnetic nozzle, neutron absorption blanket, tritium reprocessing system, shock absorber, magnetohydrodynamic generator, capacitor pulsed power system, thermal management system, and micrometeorite shields.
    Keywords: Spacecraft Propulsion and Power
    Type: Jun 20, 1999 - Jun 23, 1999; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-13
    Description: Omniplanetary space flight requires new high-performance propulsion systems based on nuclear energy. Over the last several decades, many propulsion concepts have been discussed which will allow one-month missions to Mars and one-year missions to the outer planets. Such missions entail large mission velocities and vehicle accelerations, which in turn require both high exhaust velocities (and therefore, and extremely low mass-power ratios. High performance electric propulsion appears capable of enabling multi-month transits to Mars and the near-earth asteroids; however, the mass-power ratio of these systems appears too high to achieve large accelerations for outer planet missions. This presentation analyzed the round-trip mission times and distances. This analysis has shown that even high-performance power-limited systems cannot achieve the higher accelerations needed to meet fast missions to the outer planets. Gain-limited missions are necessary for those extremely aggressive missions. An analysis of spacecraft power systems via a power balance and examination of gain vs mass-power ratio has shown: (1) A minimum gain is needed to have enough power for thrust production and driver operation; (2) Increases in gain result in decreases in mass-power ratio, which in turn leads to greater achievable accelerations. However, there is an absolute minimum mass-power ratio for a given set of subsystems, even in the limit of infinite gain.
    Keywords: Spacecraft Propulsion and Power
    Type: Advanced Propulsion; Apr 05, 1999 - Apr 08, 1999; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: This paper presents the Paving a Highway to Space at the 49th JANNAF (Joint Army-Navy-NASA-Air force) Propulsion Meeting. The topics include: 1) Earth-To-Orbit; 2) Orbit and Beyond; 3) Duct Propulsion; 4) Electric Propulsion; 5) Beamed Energy Propulsion; 6) Externally-Effected Force; 7) Nuclear Propulsion; 8) The Road to Higher Power Densities and Performance; 9) Propulsion Technology Map; 10) Launch Applications; 11) Space Applications; and 12) Advanced High-Energy Concepts. This paper is presented in viewgraph form.
    Keywords: Spacecraft Propulsion and Power
    Type: Propulsion; Dec 14, 1999 - Dec 17, 1999; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Rapid transportation of human crews to destinations throughout the solar system will require propulsion systems having not only very high exhaust velocities (i.e., I(sub sp) 〉= 10(exp 4) to 10(exp 5) sec) but also extremely low mass-power ratios (i.e., alpha 〈= 10(exp -2) kg/kW). These criteria are difficult to meet with electric propulsion and other power-limited systems, but may be achievable with propulsion concepts that use onboard power to produce a net gain in energy via fusion or some other nuclear process. This paper compares the fundamental performance of these gain-limited systems with that of power-limited systems, and determines from a generic power balance the gains required for ambitious planetary missions ranging up to 100 AU. Results show that energy gain reduces the required effective mass-power ratio of the system, thus enabling shorter trip times than those of power-limited concepts.
    Keywords: Spacecraft Propulsion and Power
    Type: Jun 20, 1999; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: Rapid transportation of human crews to destinations throughout the solar system will require propulsion systems having not only very high exhaust velocities (i.e., I(sub sp) greater or equal to 10(exp 4) to 10(exp 5) sec) but also extremely low mass-power ratios (i.e., alpha less than or equal to 10(exp -2) kg/kW). These criteria are difficult to meet with electric propulsion and other power-limited systems, but may be achievable with propulsion concepts that use onboard power to produce a net gain in energy via fusion or some other nuclear process. This paper compares the fundamental performance of these gain-limited systems with that of power-limited systems, and determines from a generic power balance the gains required for ambitious planetary missions ranging up to 100 AU. Results show that energy gain reduces the required effective mass-power ratio of the system, thus enabling shorter trip times than those of power-limited concepts.
    Keywords: Spacecraft Propulsion and Power
    Type: Jun 20, 1999 - Jun 25, 1999; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: In September, 1996, anomalous pocketing erosion was observed in the aft end of the throat ring of the nozzle of one of the reusable solid rocket motors (RSRM 56B) used on NASA's space transportation system (STS) mission 79. The RSRM throat ring is constructed of bias tape-wrapped carbon cloth/ phenolic (CCP) ablative material. A comprehensive investigation revealed necessary and sufficient conditions for occurrence of the pocketing event and provided rationale that the solid rocket motors for the subsequent mission, STS-80, were safe to fly. The nozzles of both of these motors also exhibited anomalous erosion similar to, but less extensive than that observed on STS-79. Subsequent to this flight, the investigation to identify both the specific causes and the corrective actions for elimination of the necessary and sufficient conditions for the pocketing erosion was intensified. A detailed fault tree approach was utilized to examine potential material and process contributors to the anomalous performance. The investigation involved extensive constituent and component material property testing, pedigree assessments, supplier audits, process audits, full scale processing test article fabrication and evaluation, thermal and thermostructural analyses, nondestructive evaluation, and material performance tests conducted using hot fire simulation in laboratory test beds and subscale and full scale solid rocket motor static test firings. This presentation will provide an over-view of the observed anomalous nozzle erosion and the comprehensive, fault-tree based investigation conducted to resolve this issue.
    Keywords: Spacecraft Propulsion and Power
    Type: Rocket Nozzle Technology; Mar 15, 1998 - Mar 20, 1998; Salt Lake City, UT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: The National Aeronautics and Space Administration (NASA) is pursuing using ceramic matrix composites (CMC) as primary structural components for advanced rocket engines. This endeavor is due to the requirement of increasing safety by two orders of magnitude and reducing costs from $10,000/lb to $1,000/lb both within ten years. Out year goals are even more aggressive. Safety gains, through using CMCS, will be realized by increasing temperature margins, tolerance for extreme thermal transients, and damping capability of components and systems, by using components with lower weight and thermal conductivity, etc. Gains in cost reduction, through using CMCS, are anticipated by enabling higher performance systems, using lighter weight components and systems, enabling 100 mission reusability without system refurbishment, greatly reducing cooling requirements and erosion rates, selecting safe fabrication processes that are ideally cost competitive with metal processes at low volume production, etc. This philosophy contrasts the previous philosophy of rocket engine development focused largely on achieving the highest performance with metals and ablatives -- cost and safety were not the focal point of the initial design. Rocket engine components currently being pursued, largely C/SiC and SiC/SiC, include blisks or rotors, 10 foot by 8 foot nozzle ramps, gas generators, thrust chambers, and upperstage nozzles. The Simplex Turbopump CMC blisk effort has just successfully completed a 4.5 year development and test program. The other components mentioned are in the design or fabrication stage. Although the temperature limits of the CMC materials are not quantified in a realistic environment yet, CMC materials are projected to be the only way to achieve significant safety risks mitigation and cost reductions simultaneously. We, the end-users, material fabricators, technology facilitators, and government organizations are charged with developing and demonstrating a much safer and a lot less costly Earth-to-Orbit full-scale propulsion system by 2005.
    Keywords: Spacecraft Propulsion and Power
    Type: AeroMat; Jun 26, 2000 - Jun 29, 2000; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-17
    Description: Next generation launch and propulsion systems face significant challenges of providing increased performance at lower cost with shorter development cycles. The use of existing materials in new application areas and the development and application of "advanced" material systems are enabling for the achievement of these aggressive goals. An area which offers substantial opportunity to decrease liquid rocket engine systems weight, and thus provide a measure of increased performance, is the nozzle. This presentation will examine the technical issues and showstoppers limiting the application of alternate materials to liquid rocket engine nozzles and identify the key material systems which have the potential for high payoff relative to the forcing functions of cost and performance (weight). Existing nozzle material development projects will be cited and opportunities for future joint partnerships to address these materials and processes challenges will be addressed. The presentation will include overviews of activities in low cost ablative nozzles, ceramic matrix composite cooled and uncooled nozzles, and advanced metallics.
    Keywords: Spacecraft Propulsion and Power
    Type: National Space and Missile Materials Symposium; Oct 19, 1998 - Oct 22, 1998; Colorado Springs, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...