ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Spacecraft Instrumentation and Astrionics  (4)
  • Astrophysics  (3)
  • Fisheries
  • 2000-2004  (7)
  • 1
    Publication Date: 2017-10-02
    Description: NASA has identified the development of an autonomously operating spacecraft as a necessity for an expanded program of missions exploring the Solar System. The Autonomous Sciencecraft Experiment (ASE) has been selected for flight demonstration by NASA s New Millennium Program (NMP) as part of the Space Technology 6 (ST6) mission. ASE is scheduled to fly on the US Air Force Research Laboratory (AFRL) Techsat-21 constellation in 2006. Tech- Sat-21 consists of three satellites flying in a variable-geometry formation in Earth orbit. Each satellite is equipped with X-band Synthetic Aperture Radar, yielding high spatial resolution images (approx. 3 m) of the Earth s surface. The constellation will fly at an altitude of 550 km, in a 35.4 inclination circular orbit, yielding exact repeat-track observations every 13 days. Prior to full deployment, elements of the versatile ASE spacecraft command and control software, image formation software and science processing software will be utilized and tested on two very different platforms in 2003: AirSAR and EO-1 (described below). Advantages of Autonomous Operations: ASE will demonstrate advanced autonomous science data acquisition, processing, and product downlink prioritization, as well as autonomous spacecraft command and control, and fault detection. The advantages of spacecraft autonomy are to future missions include: (a) making the best use of reduced downlink; (b) the overcoming of communication delays through decisionmaking in situ, enabling fast reaction to dynamic events; (c) an increase of science content per byte of returned data; and (d) an avoidance of return of null (no-change/no feature) datasets: if there is no change detectable between two scenes of the same target, there is no need to return the second dataset.
    Keywords: Astrophysics
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Goddard Space Flight Center's Geoscience Laser Altimeter System (GLAS) is the sole scientific instrument on the Ice, Cloud and land Elevation Satellite (ICESat) that was launched on January 12, 2003 from Vandenberg AFB. A thermal control architecture based on propylene Loop Heat Pipe technology was developed to provide selectable/stable temperature control for the lasers and other electronics over the widely varying mission environment. Following a nominal LHP and instrument start-up, the mission was interrupted with the failure of the first laser after only 36 days of operation. During the 5-month failure investigation, the two GLAS LHPs and the electronics operated nominally, using heaters as a substitute for the laser heat load. Just prior to resuming the mission, following a seasonal spacecraft yaw maneuver, one of the LHPs deprimed and created a thermal runaway condition that resulted in an emergency shutdown of the GLAS instrument. This paper presents details of the LHP anomaly, the resulting investigation and recovery, along with on-orbit flight data during these critical events.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: Rept-2004-01-2558 , 34th International Conferrence on Environmental Systems; Jul 18, 2004 - Jul 22, 2004; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Geoscience Laser Altimeter System (GLAS) instrument is NASA Goddard Space Flight Center's first application of Loop Heat Pipe technology that provides selectable/stable temperature levels for the lasers and other electronics over a widely varying mission environment. GLAS was successfully launched as the sole science instrument aboard the Ice, Clouds, and Land Elevation Satellite (ICESat) from Vandenberg AFB at 4:45pm PST on January 12, 2003. After SC commissioning, the LHPs started easily and have provided selectable and stable temperatures for the lasers and other electronics. This paper discusses the thermal development background and testing, along with details of early flight thermal performance data.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: Rept-2003-01-2421 , Rept-03ICES-274 , 33rd International Conference on Environmental Systems; Jan 01, 2003; Vancouver, British Columbia; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: We present a detailed study of the effects of mesh refinement boundaries on the convergence and stability of simulations of black hole spacetimes. We find no technical problems. In our applications of this technique to the evolution of puncture initial data, we demonstrate that it is possible to simulaneously maintain second order convergence near the puncture and extend the outer boundary beyond 100M, thereby approaching the asymptotically flat region in which boundary condition problems are less difficult.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Geoscience Laser Altimetry System (GLAS) instrument which is the sole instrument on ICESat was launched on January 12, 2003. GLAS utilizes two actively controlled propylene Loop Heat Pipes (LHPs) as the core of its thermal system. The LHPs started quickly when the Dale Ohm starter heaters were powered and have as designed. The low control heater power and on-orbit tight temperature control appear independent of gravity effects when comparing ground testing to flight data. The use of coupling blocks was also unique to these LHPs. Their application reduced control heater power by reducing the subcooling from the radiator. The effectiveness in reducing subcooling of the coupler blocks decreased during flight from ground testing, but internal thermal isolation in the compensation chamber between the subcooled returning liquid increased in flight resulting in no net increase in control heater power versus ground measurements. Overall the application of LHPs in the thermal system for GLAS met instrument requirements and provided flexibility for the overall system as last minute requirements became known.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: International Two-Phase Workshop; Sep 15, 2003 - Sep 17, 2003; Noordwijk; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: We resolve the extended X-ray emission from the prototypical ultraluminous infrared galaxy Arp 220. Extended, faint, edge-brightened, soft X-ray lobes outside the optical galaxy are observed to a distance of 1CL 15 kpc on each side of the nuclear region. Bright plumes inside the optical isophotes coincide with the optical line emission and extend 1 1 kpc from end to end across the nucleus. The data for the plumes cannot be fitted by a single-temperature plasma and display a range of temperatures from 0.2 to 1 keV. The plumes emerge from bright, diffuse circumnuclear emission in the inner 3 kpc centered on the Ha peak, which is displaced from the radio nuclei. There is a close morphological correspondence between the Ha and soft X-ray emission on all spatial scales. We interpret the plumes as a starburst-driven superwind and discuss two interpretations of the emission from the lobes in the context of simulations of the merger dynamics of Arp 220.
    Keywords: Astrophysics
    Type: The Astrophysical Journal (ISSN 0004-637X); 591; 154-166
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The Earth Observing One Spacecraft is currently flying The Autonomous Sciencecraft Experiment (ASE) - onboard autonomy software to improve science return. The ASE software enables the spacecraft to autonomously detect and respond to science events occurring on the Earth. ASE includes software systems that perform science data analysis, mission planning, and run-time robust execution. In this article we describe the autonomy flight software and how it enables a new paradigm of autonomous science and mission operations.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: AIAA First Intelligence Systems Technical Conference; Sep 20, 2004 - Sep 22, 2004; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...