ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Spacecraft Instrumentation and Astrionics
  • E52
  • J24
  • 2010-2014  (6)
Collection
Years
Year
  • 1
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: JSC-CN-32223 , Space Exploration International Conference; Oct 29, 2014 - Oct 31, 2014; Strasbourg; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: JSC-CN-32223 , Space Exploration International Conference; Oct 29, 2014 - Oct 31, 2014; Strasbourg; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: JSC-CN-26641 , AIAA Guidance, Navigation, and Control Conference; Aug 13, 2012 - Aug 16, 2012; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: While at JSC for the summer of 2011, I was assigned to work on the sensor test for Orion relative-navigation risk mitigation (STORRM) development test objective (DTO). The STORRM DTO was flown on-board Endeavor during STS-134. The objective of the STORRM DTO is to test the visual navigation system (VNS), which will be used as the primary relative navigation sensor for the Orion spacecraft. The VNS is a flash lidar system intended to provide both line of sight and range information during rendezvous and proximity operations. The STORRM DTO also serves as a testbed for the high-resolution docking camera. This docking camera will be used to provide piloting cues for the crew during proximity operations. These instruments were mounted next to the trajectory control sensor (TCS) in Endeavour s payload bay. My principle objective for the summer was to generate a best estimated trajectory (BET) for Endeavor using the flight data collected by the VNS during rendezvous and the unprecedented re-rendezvous with the ISS. I processed the raw images from the VNS to produce range and bearing measurements. I then aggregated these measurements and extracted the measurements corresponding to individual reflectors. I combined the information contained in these measurements with data from the Endeavour's inertial sensors using Kalman smoothing techniques to ultimately produce a BET. This work culminated with a final presentation of the result to division management. Development of this tool required that traditional linear smoothing techniques be modified in a novel fashion to permit for the inclusion of non-linear measurements. This internship has greatly helped me further my career by providing exposure to real engineering projects. I also have benefited immensely from the mentorship of the engineers working on these projects. Many of the lessons I learned and experiences I had are of particular value because then can only be found in a place like JSC.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: JSC-CN-24356
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: This paper details the design and analysis of the cislunar optical navigation system being proposed for the Orion Earth-Moon (EM) missions. In particular, it presents the mathematics of the navigation filter. It also presents the sensitivity analysis that has been performed to understand the performance of the proposed system, with particular attention paid to entry flight path angle constraints and the DELTA V performance
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: AAS 14-263 , JSC-CN-30284 , AAS Guidance and Control Conference; Jan 31, 2014 - Feb 05, 2014; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Orion relative Navigation System has sought to take advantage of the latest developments in sensor and algorithm technology while living under the constraints of mass, power, volume, and throughput. In particular, the only sensor specifically designed for relative navigation is the Vision Navigation System (VNS), a lidar-based sensor. But it uses the Star Trackers, GPS (when available) and IMUs, which are part of the overall Orion navigation sensor suite, to produce a relative state accurate enough to dock with the ISS. The Orion Relative Navigation System has significantly matured as the program has evolved from the design phase to the flight software implementation phase. With the development of the VNS system and the STORRM flight test of the Orion Relative Navigation hardware, much of the performance of the system will be characterized before the first flight. However challenges abound, not the least of which is the elimination of the RF range and range-rate system, along with the development of the FSW in the Matlab/Simulink/Stateflow environment. This paper will address the features and the rationale for the Orion Relative Navigation design as well as the performance of the FSW in a 6-DOF environment as well as the initial results of the hardware performance from the STORRM flight.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: JSC-CN-22883 , AIAA Atmospheric Flight Mechanics Conference; Aug 08, 2011 - Aug 11, 2011; Portland, OR; United States|AIAA Guidance, Navigation, and Control Conference; Aug 08, 2011 - Aug 11, 2011; Portland, OR; United States|AIAA Modeling and Simulation Technologies Conference; Aug 08, 2011 - Aug 11, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...