ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-20
    Description: The Orion Crew Module is a component of NASAs Multi-Purpose Crew Vehicle that will be used for future missions to low Earth orbit and beyond. Ten water impact tests of the Orion Ground Test Article (GTA) were conducted at the Hydro Impact Basin at NASA Langley Research Center in 2016 and were designed to provide data for the validation of the LS-DYNA model used to determine the Crew Module structural loads during ocean splashdown, and the determination of an acceptable Model Uncertainty Factor to apply to simulation results used to drive the design. Post-test data obtained from the onboard sensors were used to reconstruct the GTA trajectories both before and after water impact. Results from one vertical test and two swing tests are presented and compared to videos taken for each test.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-27423 , AIAA SciTech 2018; Jan 08, 2018 - Jan 12, 2018; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Tschauner-Hempel equations are widely used to correct the separation distance drifts between a pair of satellites within a constellation in highly elliptical orbits [1]. This set of equations was discretized in the true anomaly angle [1] to be used in a digital steady-state hierarchical controller [2]. This controller [2] performed the drift correction between a pair of satellites within the constellation. The objective of a discretized system is to develop a simple algorithm to be implemented in the computer onboard the satellite. The main advantage of the discrete systems is that the computational time can be reduced by selecting a suitable sampling interval. For this digital system, the amount of data will depend on the sampling interval in the true anomaly angle [3]. The purpose of this paper is to implement the discrete Tschauner-Hempel equations and the steady-state hierarchical controller in the computer onboard the satellite. This set of equations is expressed in the true anomaly angle in which a relation will be formulated between the time and the true anomaly angle domains.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M09-0319 , M09-0316 , 2009 AAS/AIAA Astrodynamics Specialist Conference; Aug 09, 2009 - Aug 13, 2009; Pittsburgh, PA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Deployable aeroshells offer the promise of achieving larger aeroshell surface areas for entry vehicles than otherwise attainable without deployment. With the larger surface area comes the ability to decelerate high-mass entry vehicles at relatively low ballistic coefficients. However, for an aeroshell to perform even at the low ballistic coefficients attainable with deployable aeroshells, a flexible thermal protection system (TPS) is required that is capable of surviving reasonably high heat flux and durable enough to survive the rigors of construction handling, high density packing, deployment, aerodynamic loading and aerothermal heating. The Program for the Advancement of Inflatable Decelerators for Atmospheric Entry (PAIDAE) is tasked with developing the technologies required to increase the technology readiness level (TRL) of inflatable deployable aeroshells, and one of several of the technologies PAIDAE is developing for use on inflatable aeroshells is flexible TPS. Several flexible TPS layups were designed, based on commercially available materials, and tested in NASA Langley Research Center's 8 Foot High Temperature Tunnel (8ft HTT). The TPS layups were designed for, and tested at three different conditions that are representative of conditions seen in entry simulation analyses of inflatable aeroshell concepts. Two conditions were produced in a single run with a sting-mounted dual wedge test fixture. The dual wedge test fixture had one row of sample mounting locations (forward) at about half the running length of the top surface of the wedge. At about two thirds of the running length of the wedge, a second test surface drafted up at five degrees relative to the first test surface established the remaining running length of the wedge test fixture. A second row of sample mounting locations (aft) was positioned in the middle of the running length of the second test surface. Once the desired flow conditions were established in the test section the dual wedge test fixture, oriented at 5 degrees angle of attack down, was injected into the flow. In this configuration the aft sample mounting location was subjected to roughly twice the heat flux and surface pressure of the forward mounting location. The tunnel was run at two different conditions for the test series: 1) 'Low Pressure', and 2) 'High Pressure'. At 'Low Pressure' conditions the TPS layups were tested at 6W/cm2 and 11W/cm2 while at 'High Pressure' conditions the TPS layups were tested at 11W/cm2 and 20W/cm2. This paper details the test configuration of the TPS samples in the 8Ft HTT, the sample holder assembly, TPS sample layup construction, sample instrumentation, results from this testing, as well as lessons learned.
    Keywords: Spacecraft Design, Testing and Performance
    Type: LF99-8607 , 20th AIAA Aerodynamic Decelerator Systems Technology Conference; May 04, 2009 - May 07, 2009; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-12-17
    Description: NASAs Entry, Descent and Landing Architecture Study uses a trajectory simulation framework to evaluate various technologies and concepts of operations for human scale EDL at Mars. The study results inform agency technology investments. This paper summarizes the design assumptions and analysis of two deployable entry concepts performed in Phase 2 of the study. The entry concepts include a rigid deployable called the Adaptable Deployable Entry Placement Technology and an inflatable concept called the Hypersonic Inflatable Aerodynamic Decelerator. This paper describes the concept operations of these vehicles to deliver a 20-metric ton payload to the surface of Mars. Details of vehicle design and flight performance are summarized along with results of analysis on the aft body heating and its effect on the payload. Finally, recommended technology investments based on the results are presented.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-31056 , 2018 AIAA SPACE and Astronautics Forum and Exposition; Sep 17, 2018 - Sep 19, 2018; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...