ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (19)
  • Spacecraft Design, Testing and Performance  (15)
  • Geophysics  (4)
  • 2020-2021
  • 2005-2009  (19)
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: This viewgraph presentation gives a general overview of the X-43A program. The contents include: 1) X-43A Program Overview; 2) Vehicle Description; 3) Flight 1, MIB & Return to Flight; 4) Flight 2 and Results; and 5) Flight 3 and Results.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: A viewgraph presentation describing the hypersonics program at NASA Dryden Flight Research Center is shown. The topics include: 1) X-43A Program Overview; 2) Vehicle Description; 3) Flight 1, MIB & Return to Flight; 4) Flight 2 and Results; 5) Flight 3 and Results; and 6) Concluding Remarks
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-27
    Description: In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will send humans to the Moon and beyond. Personnel from the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for an April 2009 launch. Ares I-X will be a suborbital development flight test that will gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future flights; and demonstrate the first stage recovery system. NASA also will modify the launch infrastructure and ground and mission operations. The Ares I-X Flight Test Vehicle (FTV) will incorporate flight and mockup hardware similar in mass and weight to the operational vehicle. It will be powered by a four-segment Solid Rocket Booster (SRB), which is currently in Shuttle inventory, and will include a fifth spacer segment and new forward structures to make the booster approximately the same size and weight as the five-segment SRB. The Ares I-X flight profile will closely approximate the flight conditions that the Ares I will experience through Mach 4.5, up to approximately130,OOO feet and through maximum dynamic pressure ("Max Q") of approximately 800 pounds per square foot. Data from the Ares I-X flight will support the Ares I Critical Design Review (CDR), scheduled for 2010. Work continues on Ares I-X design and hardware fabrication. All of the individual elements are undergoing CDRs, followed by an integrated vehicle CDR in March 2008. The various hardware elements are on schedule to begin deliveries to Kennedy Space Center (KSC) in early September 2008.
    Keywords: Spacecraft Design, Testing and Performance
    Type: MSFC-2060 , International Astronautical Conference; 29 Sep. 3 Oct. 2008; Glasgow; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: KSC-2006-114 , C3P/NASA International Workshop; Jul 31, 2006 - Aug 04, 2006; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Construction Resource Utilization Explorer (CRUX) is a technology maturation project for the U.S. National Aeronautics and Space Administration to provide enabling technology for lunar and planetary surface operations (LPSO). The CRUX will have 10 instruments, a data handling function (Mapper - with features of data subscription, fusion, interpretation, and publication through geographical information system [GIs] displays), and a decision support system DSS) to provide information needed to plan and conduct LPSO. Six CRUX instruments are associated with an instrumented drill to directly measure regolith properties (thermal, electrical, mechanical, and textural) and to determine the presence of water and other hydrogen sources to a depth of about 2 m (Prospector). CRUX surface and geophysical instruments (Surveyor) are designed to determine the presence of hydrogen, delineate near subsurface properties, stratigraphy, and buried objects over a broad area through the use of neutron and seismic probes, and ground penetrating radar. Techniques to receive data from existing space qualified stereo pair cameras to determine surface topography will also be part of the CRUX. The Mapper will ingest information from CRUX instruments and other lunar and planetary data sources, and provide data handling and display features for DSS output. CRUX operation will be semi-autonomous and near real-time to allow its use for either planning or operations purposes.
    Keywords: Geophysics
    Type: ILC 2005 - 7th ILEWG International Conference on Exploration and Utilization of the Moon; Sep 18, 2005 - Sep 23, 2005; Toronto; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.
    Keywords: Geophysics
    Type: Astrobiology Science Conference; Mar 26, 2006 - Mar 30, 2006; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: In response to the Vision for Space Exploration, the National Aeronautics and Space Administration (NASA) has defined a new space exploration architecture to return humans to the Moon and prepare for human exploration of Mars. One of the first new developments will be the Ares I Crew Launch Vehicle (CLV), which will carry the Orion Crew Exploration Vehicle (CEV), into Low Earth Orbit (LEO) to support International Space Station (ISS) missions and, later, support lunar missions. As part of Ares I development, NASA will perform a series of Ares I flight tests. The tests will provide data that will inform the engineering and design process and verify the flight hardware and software. The data gained from the flight tests will be used to certify the new Ares/Orion vehicle for human space flight. The primary objectives of this first flight test (Ares I-X) are the following: Demonstrate control of a dynamically similar integrated Ares CLV/Orion CEV using Ares CLV ascent control algorithms; Perform an in-flight separation/staging event between an Ares I-similar First Stage and a representative Upper Stage; Demonstrate assembly and recovery of a new Ares CLV-like First Stage element at Kennedy Space Center (KSC); Demonstrate First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics and parachute performance; and Characterize the magnitude of the integrated vehicle roll torque throughout the First Stage (powered) flight. This paper will provide an overview of the Ares I-X flight test process and details of the individual flight tests.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 54th Joint JANNAF Propulsion Meeting; May 14, 2007 - May 17, 2007; Denver, Co; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA/AAS Astrodynamics Specialist Conference; Aug 18, 2008 - Aug 21, 2008; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: We built a device for translating a GPS antenna on a positioning table to simulate the ground motions caused by an earthquake. The earthquake simulator is accurate to better than 0.1 mm in position, and provides the "ground truth" displacements for assessing the technique of high-rate GPS. We found that the root-mean-square error of the 1-Hz GPS position estimates over the 15-min duration of the simulated seismic event was 2.5 mm, with approximately 96% of the observations in error by less than 5 mm, and is independent of GPS antenna motion. The error spectrum of the GPS estimates is approximately flicker noise, with a 50% decorrelation time for the position error of approx.1.6 s. We that, for the particular event simulated, the spectrum of dependent error in the GPS measurements. surface deformations exceeds the GPS error spectrum within a finite band. More studies are required to determine whether a generally optimal bandwidth exists for a target group of seismic events.
    Keywords: Geophysics
    Type: Geophysical Research Letters (ISSN 0094-8276); 33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Recent studies of the GPS satellite phase center offsets (PCOs) suggest that these have been in error by approx.1 m. Previous studies had shown that PCO errors are absorbed mainly by parameters representing satellite clock and the radial components of site position. On the basis of the assumption that the radial errors are equal, PCO errors will therefore introduce an error in network scale. However, PCO errors also introduce distortions, or apparent deformations, within the network, primarily in the radial (vertical) component of site position that cannot be corrected via a Helmert transformation. Using numerical simulations to quantify the effects of PC0 errors, we found that these PCO errors lead to a vertical network distortion of 6-12 mm per meter of PCO error. The network distortion depends on the minimum elevation angle used in the analysis of the GPS phase observables, becoming larger as the minimum elevation angle increases. The steady evolution of the GPS constellation as new satellites are launched, age, and are decommissioned, leads to the effects of PCO errors varying with time that introduce an apparent global-scale rate change. We demonstrate here that current estimates for PCO errors result in a geographically variable error in the vertical rate at the 1-2 mm/yr level, which will impact high-precision crustal deformation studies.
    Keywords: Geophysics
    Type: (ISSN 0148-0227)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...