ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Man/System Technology and Life Support  (5)
  • Spacecraft Design, Testing and Performance  (2)
  • 1
    Publication Date: 2011-08-24
    Description: Virtually all scenarios for the long-term habitation of spacecraft and other extraterrestrial structures involve plants as important parts of the contained environment that would support humans. Recent experiments have identified several effects of spaceflight on plants that will need to be more fully understood before plant-based life support can become a reality. The International Space Station (ISS) is the focus for the newest phase of space-based research, which should solve some of the mysteries of how spaceflight affects plant growth. Research carried out on the ISS and in the proposed terrestrial facility for Advanced Life Support testing will bring the requirements for establishing extraterrestrial plant-based life support systems into clearer focus.
    Keywords: Man/System Technology and Life Support
    Type: Current opinion in plant biology (ISSN 1369-5266); Volume 5; 3; 258-63
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Advanced Plant Habitat (APH) hardware will be a large growth volume plant habitat, capable of hosting multigenerational studies, in which environmental variables (e.g., temperature, relative humidity, carbon dioxide level light intensity and spectral quality) can be tracked and controlled in support of whole plant physiological testing and Bio-regenerative Life Support System investigations.
    Keywords: Man/System Technology and Life Support
    Type: SP-2015-07-289-KSC , KSC-E-DAA-TN30973 , Space Symposium; Apr 11, 2016 - Apr 14, 2016; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Two piloted simulations were conducted at NASA's Johnson Space Center using the Cooper-Harper scale to study the handling qualities of the Orion Command Module capsule during atmospheric entry flight. The simulations were conducted using high fidelity 6-DOF simulators for Lunar Return Skip Entry and International Space Station Return Direct Entry flight using bank angle steering commands generated by either the Primary (PredGuid) or Backup (PLM) guidance algorithms. For both evaluations, manual control of bank angle began after descending through Entry Interface into the atmosphere until drogue chutes deployment. Pilots were able to use defined bank management and reversal criteria to accurately track the bank angle commands, and stay within flight performance metrics of landing accuracy, g-loads, and propellant consumption, suggesting that the pilotability of Orion under manual control is both achievable and provides adequate trajectory performance with acceptable levels of pilot effort. Another significant result of these analyses is the applicability of flying a complex entry task under high speed entry flight conditions relevant to the next generation Multi Purpose Crew Vehicle return from Mars and Near Earth Objects.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-24034 , AIAA GNC/AFM/MST 2011 Joint Conference - (GNC) - AIAA Guidance, Navigation and Control; Aug 08, 2011 - Aug 11, 2011; Portland, OR; United States|AIAA GNC/AFM/MST 2011 Joint Conference - (MST) - AIAA Modeling and Simulation Technologies; Aug 08, 2011 - Aug 11, 2011; Portland, OR; United States|AIAA GNC/AFM/MST 2011 Joint Conference - (AFM) - AIAA 2nd Atmospheric Flight Mechanics; Aug 08, 2011 - Aug 11, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-11-30
    Description: Long-duration space missions will eventually require a fresh food supply to supplement crew diets, which means growing crops in space. The Passive Orbital Nutrient Delivery System (PONDS) is a new plant growth approach that contains both an area for a contained substrate and a reservoir for water and/or plant nutrient solutions. Ground studies have shown that the system facilitates both reliable water delivery to seeds for germination (e.g., while avoiding overwatering), and transport of water from the reservoir for improved plant growth while providing nutrients and oxygen to the root zone. In ground prototypes a capillary mat wicking material passively links the water/nutrient solution reservoir to a removable rooting module containing a substrate adapted to support plant growth. Oxygen permeable membranes are incorporated into both the reservoir walls and the rooting modules, bringing in oxygen from outside of the system into the reservoir and then into the rooting modules where the plant roots proliferate. Water is delivered from the reservoir to the substrate contained within the rooting module through the use of wicking material inserted into the plant growth substrate both from the bottom and from the sides of the rooting module. The capillary mat material is intrinsically hydrophilic and continuously wicks water to the substrate throughout the plant growth interval. The system is therefore self-watering in terms of supplying water to the root zone encompassed within the rooting module on demand. At the top, a hydrophilic phenolic foam plug surrounds the wick in the seed insertion zone, and both contains the substrate within the rooting module, and facilitates removal of excess moisture from the capillary mat wick before it can encompass seeds prior to germination. This work is supported by NASAs Space Life and Physical Sciences and Research Applications Division (SLPSRAD).
    Keywords: Man/System Technology and Life Support
    Type: KSC-E-DAA-TN69736 , American Society for Gravitational and Space Research (ASGSR) Meeting; Nov 20, 2019 - Nov 23, 2019; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.
    Keywords: Man/System Technology and Life Support
    Type: 99-ES-161 , ICES; Jul 01, 1999; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Vegetable Production System (Veggie) was developed by Orbital Technologies Corp. to be a simple, easily stowed, and high growth volume yet low resource facility capable of producing fresh vegetables on the International Space Station (ISS). In addition to growing vegetables in space, Veggie can support a variety of experiments designed to determine how plants respond to microgravity, provide real-time psychological benefits for the crew, and conduct outreach activities. Currently, Veggie provides the largest volume available for plant growth on the ISS.
    Keywords: Man/System Technology and Life Support
    Type: SP-2015-11-435-KSC , KSC-E-DAA-TN30929 , Space Symposium; Apr 11, 2016 - Apr 14, 2016; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The Space Shuttle body flap is located beneath the main engine nozzles and is required for proper aerodynamic control during orbital descent. Routine inspection of one of four body flap actuatols found one of the actuator bearings had degraded and blackened balls. A test program was initiated to demonstrate that it is acceptable to operate bearings which are degraded from operation over several flights. This test exposed the bearing to predicted flight axial loads, speeds and temperatures. Testing has been completed, and results indicate the previously flown bearings are acceptable for up to 12 additional missions.
    Keywords: Spacecraft Design, Testing and Performance
    Type: WTC2005-63539 , Proceedings WTC2005: World Tribology Congress III; Sep 12, 2005 - Sep 16, 2005; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...