ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 1161-1170 
    ISSN: 0006-3592
    Keywords: bacterial colonization ; kinetic rates ; solidwater interfaces ; Pseudomonas aeruginosa ; Pseudomonas fluorescens ; image analysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The processes leading to bacterial colonization on solidwater interfaces are adsorption, desorption, growth, and erosion. These processes have been measured individually in situ in a flowing system in real time using image analysis. Four different substrata (copper, silicon, 316 stainless-steel and glass) and 2 different bacterial species (Pseudomonas aeruginosa and Pseudomonas fluorescens) were used in the experiments. The flow was laminar (Re = 1.4) and the shear stress was kept constant during all experiments at 0.75 N m-2. The surface roughness varied among the substrata from 0.002 μm (for silicon) to 0.015 μm (for copper). Surface free energies varied from 25.1 dynes cm-1 for silicon to 31.2 dynes cm-1 for copper. Cell curface hydrophobicity, reported as hydrocarbon partitioning values, ranged from 0.67 for Ps. fluorescens to 0.97 for Ps. aeruginosa.The adsorption rate coefficient varried by as much as a factor of 10 among the combinations of bacterial strain and substratum material, and was positively correlated with surface free energy, the surface roughness of the substratum, and the hydrophobicity of the cells. The probability of desorption decreased with increasing surface free energy and surface roughness of the substratum. Cell growth was inhibited on copper, but replication of cells overlying an initial cell layer was observed with increased exposure time to the cell-containing bulk water. A mathematical model describing cell accumulation on a substratum is presented.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 263-269 
    ISSN: 0006-3592
    Keywords: microbial souring ; sulfate reduction ; porous media ; kinetics ; biotransformation ; oil reservoir ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Microbial souring (H2S production) in porous media was investigated in an anaerobic upflow porous media reactor at 60°C using microbial consortia obtained from oil reservoirs. Multiple carbon sources (formate, acetate, propionate, iso- and n-butyrates) found in reservoir waters as well as sulfate as the electron acceptor was used. Kinetics and rates of souring in the reactor system were analyzed. Higher volumetric substrate consumption rates (organic acids and sulfate) and a higher volumetric H2S production rate were found at the from part of the reactor column after H2S production had stabilized. Concentration gradients for the substrates (organic acids and sulfate) and H2S were generated along the column. Biomass accumulation throughout the entire column was observed. The average specific sulfate reduction rate (H2S production rate) in the present reactor after H2S production had stabilized was calculated to be 11062 ±2.22 mg sulfate-S/day g biomass. © 1994 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 267-274 
    ISSN: 0006-3592
    Keywords: microbial souring ; sulfate reduction ; porous media ; kinetics ; stoichiometry ; transport phenomena ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An anaerobic upflow porous media biofilm reactor was designed to study the kinetics and stoichiometry of hydrogen sulfide production by the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans (ATCC 5575) as the first step for the modeling and control of formation souring (H2S) in oil field porous media. The reactor was a packed bed (50 × 5.5 cm) tubular reactor. Sea sand (140 to 375 μm) was used as the porous media. The initial indication of souring was the appearance of well-separated black spots (precipitates of iron sulfide) in the sand bed. The blackened zones expanded radially and upward through the column. New spots also appeared and expanded into the cone shapes. Lactate (substrate) was depleted and hydrogen sulfide appeared in the effluent.Analysis of the pseudo-steady state column shows that there were concentration gradients for lactate and hydrogen sulfide along the column. The results indicate that most of the lactate was consumed at the front part of the column. Measurements of SRB biomass on the solid phase (sand) and in the liquid phase indicate that the maximum concentration of SRB biomass resided at the front part of the column while the maximum in the liquid phase occurred further downstream. The stoichiometry regarding lactate consumption and hydrogen sulfide production observed in the porous media reactor was different from that in a chemostat. After analyzing the radial dispersion coefficient for the SRB in porous media and kinetics of microbial growth, it was deduced that transport phenomena dominate the souring process in our porous media reactor system. © 1994 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: In this paper we will discuss a new mass-efficient and innovative way of protecting high-mass spacecraft during planetary Entry, Descent & Landing (EDL). Heat shields fabricated in situ can provide a thermal-protection system (TPS) for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from regolith materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Two regolith processing and manufacturing methods will be discussed: 1) Compression and sintering of the regolith to yield low density materials; 2) Formulations of a High-temperature silicone RTV (Room Temperature Vulcanizing) compound are used to bind regolith particles together. The overall positive results of torch flame impingement tests and plasma arc jet testing on the resulting samples will also be discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: KSC-2012-078 , KSC-2012-078R , KSC-2012-078RR , Pioneering Planetary Surface Systems Technologies and Capabilities (PICES) 2012; Nov 11, 2012 - Nov 15, 2012; Waikoloa, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: This NIAC project investigated an innovative approach to provide heat shield protection to spacecraft after launch and prior to each EDL thus potentially realizing significant launch mass savings. Heat shields fabricated in situ can provide a thermal-protection system for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Regolith has extremely good insulating properties and the silicates it contains can be used in the fabrication and molding of thermal-protection materials. Such in situ developed heat shields have been suggested before by Lewis. Prior research efforts have shown that regolith properties can be compatible with very-high temperature resistance. Our project team is highly experienced in regolith processing and thermal protection systems (TPS). Routine access to space and return from any planetary surface requires dealing with heat loads experienced by the spacecraft during reentry. Our team addresses some of the key issues with the EDL of human-scale missions through a highly innovative investigation of heat shields that can be fabricated in space by using local resources on asteroids and moons. Most space missions are one-way trips, dedicated to placing an asset in space for economical or scientific gain. However, for human missions, a very-reliable heat-shield system is necessary to protect the crew from the intense heat experienced at very high entry velocities of approximately 11 km/s at approximately Mach 33 (Apollo). For a human mission to Mars, the return problem is even more difficult, with predicted velocities of up to 14 km/s, at approximately Mach 42 at the Earth-atmosphere entry. In addition to human return, it is very likely that future space-travel architecture will include returning cargo to the Earth, either for scientific purposes or for commercial reasons. Platinum, titanium, helium 3, and other metals, elements and minerals are all high-value commodities in limited supply on Earth, and it may be profitable to mine these substances throughout the Solar System and return them to Earth, if an economical method can be found. To date, several private corporations have been launched to pursue these goals. Because the heat shield is the last element to be used in an Earth-return mission, a high penalty is paid in the propellant mass required to carry the heat shield to the destination and back. If the heat shield could be manufactured in space, and then outfitted on the spacecraft prior to the reentry at Earth, then significant propellant and mass savings could be achieved during launch and space operations. Preliminary mission architecture scenarios are described, which explain the potential benefits that may be derived from using an in-situ fabricated regolith heat shield. In order to prove that this is a feasible technology concept, this project successfully fabricated heat shield materials from mineral simulant materials of lunar and Martian regolith by two methods: 1) Sintering and 2) Binding the simulant with a "room-temperature vulcanizing" (RTV) silicone formulated to withstand high temperatures. Initially a third type of fabrication was planned using the hot waste stream from regolith ISRU processes. This fabrication method was discarded since the resulting samples would be too dense and brittle for heat shields. High temperature flame tests at KSC and subsequent arc jet tests at Ames Research Center (ARC) have proved promising. These coupon tests show favorable materials properties and have the potential to be a new way of fabricating heat shields for space entry into planetary atmospheres.
    Keywords: Spacecraft Design, Testing and Performance
    Type: KSC-2013-055R , KSC-2013-055RR , Space Life Sciences Laboratory (SLSL) Presentation; May 15, 2013; Cocoa Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The NASA Lunar Electric Rover (LER) has been developed at Johnson Space Center as a next generation mobility platform. Based upon a twelve wheel omni-directional chassis with active suspension the LER introduces a number of novel capabilities for lunar exploration in both manned and unmanned scenarios. Besides being the primary vehicle for astronauts on the lunar surface, LER will perform tasks such as lunar regolith handling (to include dozing, grading, and excavation), equipment transport, and science operations. In an effort to support these additional tasks a team at the Kennedy Space Center has produced a universal attachment interface for LER known as the Quick Attach. The Quick Attach is a compact system that has been retro-fitted to the rear of the LER giving it the ability to dock and undock on the fly with various implements. The Quick Attach utilizes a two stage docking approach; the first is a mechanical mate which aligns and latches a passive set of hooks on an implement with an actuated cam surface on LER. The mechanical stage is tolerant to misalignment between the implement and the LER during docking and once the implement is captured a preload is applied to ensure a positive lock. The second stage is an umbilical connection which consists of a dust resistant enclosure housing a compliant mechanism that is optionally actuated to mate electrical and fluid connections for suitable implements. The Quick Attach system was designed with the largest foreseen input loads considered including excavation operations and large mass utility attachments. The Quick Attach system was demonstrated at the Desert Research And Technology Studies (D-RA TS) field test in Flagstaff, AZ along with the lightweight dozer blade LANCE. The LANCE blade is the first implement to utilize the Quick Attach interface and demonstrated the tolerance, speed, and strength of the system in a lunar analog environment.
    Keywords: Spacecraft Design, Testing and Performance
    Type: KSC-2009-302 , Earth and Space 2010; Mar 14, 2010 - Mar 17, 2010; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...