ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Spacecraft Design, Testing and Performance  (3)
  • 2005-2009  (3)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2019-07-18
    Description: Tests of arcing and current collection in simulated space plasma conditions have been performed at the NASA Glenn Research Center (GRC) in Cleveland, Ohio, for over 30 years and at the Marshall Space flight Center (MSFC) for almost as long. During this period, proper test conditions for accurate and meaningful space simulation have been worked out, comparisons with actual space performance in spaceflight tests and with real operational satellites have been made, and NASA has achieved our own internal standards for test protocols. It is the purpose of this paper to communicate the test conditions, test procedures, and types of analysis used at NASA GRC and MSFC to the space environmental testing community at large, to help with international space-plasma arcing testing standardization. To be discussed are: 1. Neutral pressures, neutral gases, and vacuum chamber sizes. 2. Electron and ion densities, plasma uniformity, sample sizes, and Debye lengths. 3. Biasing samples versus self-generated voltages. Floating samples versus grounded. 4. Power supplies and current limits. Isolation of samples from power supplies during arcs. Arc circuits. Capacitance during biased arc-threshold tests. Capacitance during sustained arcing and damage tests. Arc detection. Preventing sustained discharges during testing. 5. Real array or structure samples versus idealized samples. 6. Validity of LEO tests for GEO samples. 7. Extracting arc threshold information from arc rate versus voltage tests. 8 . Snapover and current collection at positive sample bias. Glows at positive bias. Kapton pyrolization. 9. Trigger arc thresholds. Sustained arc thresholds. Paschen discharge during sustained arcing. 10. Testing for Paschen discharge thresholds. Testing for dielectric breakdown thresholds. Testing for tether arcing. 11. Testing in very dense plasmas (ie thruster plumes). 12. Arc mitigation strategies. Charging mitigation strategies. Models. 13. Analysis of test results. Finally, the necessity of testing will be emphasized, not to the exclusion of modeling, but as part of a complete strategy for determining when and if arcs will occur, and preventing them from occurring in space.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 9th Spacecraft Charging Technology Conference; Apr 04, 2005 - Apr 08, 2005; Tsukuba; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The systems engineering of space missions to study planet Earth has been an important focus of the National Aeronautics and Space Administration (NASA) since its inception. But all space missions are becoming increasingly complex and this fact, reinforced by some major mishaps, has caused NASA to reevaluate their approach to achieving safety and mission success. A new approach ensures that there are adequate checks and balances in place to maximize the probability of safety and mission success. To this end the agency created the concept of Technical Authority which identifies a key individual accountable and responsible for the technical integrity of a flight mission as well as a project-independent reporting path. At the Goddard Space Flight Center (GSFC) this responsibility ultimately begins with the Mission Systems Engineer (MSE) for each satellite mission. This paper discusses the Technical Authority process and then describes some unique steps that are being taken at the GSFC to support these MSEs in meeting their responsibilities.
    Keywords: Spacecraft Design, Testing and Performance
    Type: International Council on Systems Engineering (INCOSE) 18th Annual International Symposium 2008; Jun 15, 2008 - Jun 19, 2008; Utrecht; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: This thesis discusses application of a robust constrained optimization approach to control design to develop an Auto Balancing Controller (ABC) for a centrifuge rotor to be implemented on the International Space Station. The design goal is to minimize a performance objective of the system, while guaranteeing stability and proper performance for a range of uncertain plants. The Performance objective is to minimize the translational response of the centrifuge rotor due to a fixed worst-case rotor imbalance. The robustness constraints are posed with respect to parametric uncertainty in the plant. The proposed approach to control design allows for both of these objectives to be handled within the framework of constrained optimization. The resulting controller achieves acceptable performance and robustness characteristics.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-9030
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...