ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-01
    Description: In 2012 during the entry, descent, and landing of the Mars Science Laboratory (MSL), the MSL Entry, Descent, and Landing Instrumentation (MEDLI) sensor suite was collecting in-flight heatshield pressure and temperature data. The data collected by the MEDLI instruments has since been used for reconstruction of vehicle aerodynamics, atmospheric conditions, aerothermal heating, and Thermal Protection System (TPS) performance as well as material response model validation and refinement. The Mars Entry, Descent, and Landing Instrumentation 2 (MEDLI2) sensor suite for the Mars 2020 heatshield and backshell is being designed to expand on the measurements and knowledge gained from MEDLI. Similar to MEDLI, MEDLI2 will measure the pressure and temperature of the heatshield. MEDLI2 will additionally measure the temperature, pressure, total heat flux, and radiative heat flux on the backshell.Since the backshell instrumentation is new to MEDLI2, Do No Harm (DNH) testing was conducted on instrumented backshell TPS (SLA-561V) panels. The panels consisted of four pressure port holes, one Mars Entry Atmospheric Data System (MEADS) pressure port plug, one MEDLI2 Integrated Sensor Plug (MISP) thermal plug, and one heat flux sensor. DNH testing was conducted to ensure the performance of the TPS was not degraded due to sensor integration and to characterize any TPS performance changes. The testing consisted of environmental testing vibration, shock, thermal vacuum (TVAC) cycling and bounding aerothermal (arc jet) testing. During arc jet testing, the heat flux sensors embedded in the SLA-561V panels exhibited an unexpected temporary reduction in the heat flux sensor temperature and response. After review of the test results, it was determined that this unexpected response was confined to the two heat flux sensors that experienced the greatest thermal shock condition. This condition consisted of a liquid nitrogen (LN2) bath that induced temperatures of approximately -190C, and then a transition (thermal shock) to an arc jet test at a heat rate of approximately 21 W/cm2. Both heat flux sensors that were exposed to this thermal shock experienced a blister in the thermal coating during the arc jet test.Two heat flux sensor thermal shock test series were performed to investigate the cause of the blistering and subsequent energy release. In these tests, the heat flux sensor was first cold soaked in either a dry ice or LN2 bath to induce temperatures of approximately -78C or -190C, respectively. Then the sensors were thermally shocked using two propane torches with a heat rate of either approximately 8 W/cm2 or 21 W/cm2. The key findings indicated that there is a correlation between thermal shock and the blistering observed in the DNH test series, and that the cause appeared to be rooted in the heat flux sensor epoxy that encapsulates the sensor thermopile.Since the heat flux sensors are required to measure heat fluxes up to 15 W/cm2 during the Mars 2020 entry, a third test series was designed to determine if blistering is an issue at this maximum expected flight heat flux. Results from all three thermal shock test series and a discussion about whether or not blistering of the heat flux sensor thermal coating could be an issue for the Mars 2020 mission will be presented.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN70038 , International Planetary Probe Workshop (IPPW) 2019; Jul 08, 2019 - Jul 12, 2019; Oxford; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Orbital debris in the millimeter size range can pose a hazard to current and planned spacecraft due to the high relative impact speeds in Earth orbit. Fortunately, orbital debris has a relatively short life at lower altitudes due to atmospheric effects; however, at higher altitudes orbital debris can survive much longer and has resulted in a band of high flux around 700 to 1,500 km above the surface of the Earth. While large orbital debris objects are tracked via ground based observation, little information can be gathered about small particles except by returned surfaces, which until the Orion Exploration Flight Test number one (EFT-1), has only been possible for lower altitudes (400 to 500 km). The EFT-1 crew module backshell, which used a porous, ceramic tile system with surface coatings, has been inspected post-flight for potential micrometeoroid and orbital debris (MMOD) damage. This paper describes the pre- and post-flight activities of inspection, identification and analysis of six candidate MMOD impact craters from the EFT-1 mission.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-35493 , AIAA Annual Technical Symposium; May 06, 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The dual-wall, Whipple shield is the shield of choice for lightweight, long-duration flight. The shield uses an initial sacrificial wall to initiate fragmentation and melt an impacting threat that expands over a void before hitting a subsequent shield wall of a critical component. The key parameters to this type of shield are the rear wall and its mass which stops the debris, as well as the minimum shock wave strength generated by the threat particle impact of the sacrificial wall and the amount of room that is available for expansion. Ensuring the shock wave strength is sufficiently high to achieve large scale fragmentation/melt of the threat particle enables the expansion of the threat and reduces the momentum flux of the debris on the rear wall. Three key factors in the shock wave strength achieved are the thickness of the sacrificial wall relative to the characteristic dimension of the impacting particle, the density and material cohesion contrast of the sacrificial wall relative to the threat particle and the impact speed. The mass of the rear wall and the sacrificial wall are desirable to minimize for launch costs making it important to have an understanding of the effects of density contrast and impact speed. An analytic model is developed here, to describe the influence of these three key factors. In addition this paper develops a description of a fourth key parameter related to fragmentation and its role in establishing the onset of projectile expansion.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-32626 , Hypervelocity Impact Symposium; Apr 26, 2015 - Apr 30, 2015; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Rapid Response Radiation Survey (R3S) experiment, designed as a quick turnaround mission to make radiation measurements in LEO, will fly as a hosted payload in partnership with NovaWurks using their Hyper-integrated Satlet (HiSat) architecture. The need for the mission arises as the Nowcast of Atmospheric Ionization Radiation for Aviation Safety (NAIRAS) model moves from a research effort into an operational radiation assessment tool. The data collected by R3S, in addition to the complementary data from a NASA Langley Research Center (LaRC) atmospheric balloon mission entitled Radiation Dosimetry Experiment (RaDX), will validate exposure prediction capabilities of NAIRAS. This paper discusses the development of the R3S experiment as made possible by use of the HiSat architecture. The system design and operational modes of the experiment are described, as well as the experiment interfaces to the HiSat satellite via the user defined adapter (UDA) provided by NovaWurks. This paper outlines the steps taken by the project to execute the R3S mission in the 4 months of design, build, and test. Finally, description of the engineering process is provided, including the use of facilitated rapid/concurrent engineering sessions, the associated documentation, and the review process employed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-22260 , AIAA Small Sat Conference 2015 (SmallSat 2015); Aug 08, 2015 - Aug 13, 2015; Ogden, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Numerous mission support hardware systems and their spares are maintained outside of the habitable volume of the International Space Station (ISS), and are arranged covered by a multi-layer insulation (MLI) thermal blanket which provides both thermal control and a measure of protection from micrometeoroids and orbital debris (MMOD). The NASA Hypervelocity Impact Technology (HVIT) group at the Johnson Space Center in Houston Texas has assessed the protection provided by MLI in a series of hypervelocity impact tests using a 1 mm thick aluminum 6061-T6 rear wall to simulate the actual hardware behind the MLI. HVIT has also evaluated methods to enhance the protection provided by MLI thermal blankets. The impact study used both aluminum and steel spherical projectiles accelerated to speeds of 7 km/s using a 4.3 mm, two-stage, light-gas gun at the NASA White Sands Test Facility (WSTF).
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-35651-3 , Meeting of the Inter-Agency Debris Coordination Committee; Mar 29, 2016 - Apr 01, 2016; Didcot; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: NASAs Mars Science Laboratory (MSL) spacecraft successfully performed its Entry, Descent & Landing (EDL) phase on August 6, 2012. This paper presents the thermal response of the MSL spacecraft from EDL Initialization (5 days prior to Entry) to Rover touchdown on the surface of Mars. Temperature telemetry recorded during EDL is used to reconstruct the thermal response of the spacecraft to each EDL event. Temperature profiles for the Descent Stage and Rover hardware are presented and explained in the context of the changing EDL environments (aerothermal heating and convective cooling) and power states.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JPL-CL-16-1805 , International Conference on Environmental Systems; Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-01-04
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JPL-CL-16-2851 , International Conference on Environmental Systems; Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-33607 , APS Biennial Conference on Shock Compression of Condensed Matter; Jun 14, 2015 - Jun 19, 2015; Tampa, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The multipurpose crew vehicle, Orion, is being designed and built for NASA to handle the rigors of crew launch, sustainment and return from scientific missions beyond Earth orbit. In this role, the Orion vehicle is meant to operate in the space environments like the naturally occurring meteoroid and the artificial orbital debris environments (MMOD) with successful atmospheric reentry at the conclusion of the flight. As a result, Orion's reentry module uses durable porous, ceramic tiles on almost thirty square meters of exposed surfaces to accomplish both of these functions. These durable, non-ablative surfaces maintain their surface profile through atmospheric reentry; thus, they preserve any surface imperfections that occur prior to atmospheric reentry. Furthermore, Orion's launch abort system includes a shroud that protects the thermal protection system while awaiting launch and during ascent. The combination of these design features and a careful pre-flight inspection to identify any manufacturing imperfections results in a high confidence that damage to the thermal protection system identified post-flight is due to the in-flight solid particle environments. These favorable design features of Orion along with the unique flight profile of the first exploration flight test of Orion (EFT-1) have yielded solid particle environment measurements that have never been obtained before this flight.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-38175 , Hypervelocity Impact Symposium; Apr 24, 2017 - Apr 28, 2017; Canterbury; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Lithium-Ion (Li-Ion) batteries have yielded significant performance advantages for many industries, including the aerospace industry, and have been selected to replace nickel hydrogen (Ni-H2) batteries for the International Space Station (ISS) program to meet the energy storage demands. As the ISS uses its vast solar arrays to generate its power, the solar ar-rays meet their sunlit power demands and supply excess power to battery packs for power de-livery on the sun obscured phase of the approximate 90 minute low Earth orbit. These large battery packs are located on the exterior of the ISS, and as such, the battery packs are ex-posed to external environment threats like naturally occurring meteoroids and artificial orbital debris (MMOD). While the risks from these solid particle environments has been known and addressed to an acceptable risk of failure through shield design, it is not possible to completely eliminate the risk of loss of these assets on orbit due to MMOD, and as such, failure consequences to the ISS have been considered.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-38177 , Hypervelocity Impact Symposium; Apr 24, 2017 - Apr 28, 2017; Canterbury; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...