ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-05
    Description: Author(s): A. Simon, M. Guttormsen, A. C. Larsen, C. W. Beausang, P. Humby, J. T. Burke, R. J. Casperson, R. O. Hughes, T. J. Ross, J. M. Allmond, R. Chyzh, M. Dag, J. Koglin, E. McCleskey, M. McCleskey, S. Ota, and A. Saastamoinen The γ -ray strength function and level density in the quasi-continuum of Sm 151 , 153 have been measured using bismuth germanate shielded Ge clover detectors of the STARLiTeR system. The Compton shields allow an extraction of the γ strength down to unprecedentedly low γ energies of ≈ 500 keV. For the fir… [Phys. Rev. C 93, 034303] Published Fri Mar 04, 2016
    Keywords: Nuclear Structure
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-22
    Description: Author(s): A. Hennig, T. Ahn, V. Anagnostatou, A. Blazhev, N. Cooper, V. Derya, M. Elvers, J. Endres, P. Goddard, A. Heinz, R. O. Hughes, G. Ilie, M. N. Mineva, P. Petkov, S. G. Pickstone, N. Pietralla, D. Radeck, T. J. Ross, D. Savran, M. Spieker, V. Werner, and A. Zilges Background: One-phonon mixed-symmetry quadrupole excitations are a well-known feature of near-spherical, vibrational nuclei. Their interpretation as a fundamental building block of vibrational structures is supported by the identification of multiphonon states resulting from a coupling of fully-symm… [Phys. Rev. C 92, 064317] Published Mon Dec 21, 2015
    Keywords: Nuclear Structure
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-02-23
    Description: Author(s): R. O. Hughes, J. T. Burke, R. J. Casperson, J. E. Escher, S. Ota, J. J. Ressler, N. D. Scielzo, R. A. E. Austin, B. Abromeit, N. J. Foley, E. McCleskey, M. McCleskey, H. I. Park, T. J. Ross, and A. Saastamoinen The low-spin structure of odd-odd Y 88 has been studied via ( p , d γ ) reactions on an Y 89 target. The K150 Cyclotron at the Texas A&M University Cyclotron Institute was employed to provide a 28.5-MeV proton beam, and particle- γ and particle- γ − γ coincidence data were collected with the STARLiTeR array. A… [Phys. Rev. C 93, 024315] Published Thu Feb 18, 2016
    Keywords: Nuclear Structure
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-02-24
    Description: Author(s): P. Humby, A. Simon, C. W. Beausang, T. J. Ross, R. O. Hughes, J. T. Burke, R. J. Casperson, J. Koglin, S. Ota, J. M. Allmond, M. McCleskey, E. McCleskey, A. Saastamoinen, R. Chyzh, M. Dag, K. Gell, T. Tarlow, and G. Vyas The standard γ-ray energy calibration source 152 Eu is well known based on the 13.5 y decay of its ground state. However, in addition to this decay 152 Eu also has two relatively long-lived isomeric states: a 9 h J π =0 − state at E * =46 keV and a 96 min J π =8 − state at E * =148 keV. Here we report a new mea... [Phys. Rev. C 91, 024322] Published Mon Feb 23, 2015
    Keywords: Nuclear Structure
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-05-30
    Description: Author(s): M. Hughes, E. A. George, O. Naviliat-Cuncic, P. A. Voytas, S. Chandavar, A. Gade, X. Huyan, S. N. Liddick, K. Minamisono, S. V. Paulauskas, and D. Weisshaar The half-life of the F 20 ground state was measured using a radioactive beam implanted in a plastic scintillator and recording β γ coincidences together with four CsI(Na) detectors. The result, T 1 / 2 = 11.0011 ( 69 ) stat ( 30 ) sys s, is at variance by 17 combined standard deviations with the two most precise r... [Phys. Rev. C 97, 054328] Published Tue May 29, 2018
    Keywords: Nuclear Structure
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-16
    Description: Author(s): P. Humby, A. Simon, C. W. Beausang, J. M. Allmond, J. T. Burke, R. J. Casperson, R. Chyzh, M. Dag, K. Gell, R. O. Hughes, J. Koglin, E. McCleskey, M. McCleskey, S. Ota, T. J. Ross, A. Saastamoinen, T. Tarlow, and G. Vyas New levels and γ -ray transitions were identified in Sm 150 , 152 utilizing the ( p , t ) reaction and particle- γ coincidence data. A large, peak-like structure observed between 2.3–3.0 MeV in excitation energy in the triton energy spectra was also investigated. The orbital angular-momentum transfer was pro… [Phys. Rev. C 94, 064314] Published Wed Dec 14, 2016
    Keywords: Nuclear Structure
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-20
    Description: Distributed Spacecraft Missions (DSMs) are gaining momentum in their application to Earth Observation (EO) missions owing to their unique ability to increase observation sampling in spatial, spectral, angular and temporal dimensions simultaneously. DSM design includes a much larger number of variables than its monolithic counterpart, therefore, Model-Based Systems Engineering (MBSE) has been often used for preliminary mission concept designs, to understand the trade-offs and interdependencies among the variables. MBSE models are complex because the various objectives a DSM is expected to achieve are almost always conflicting, non-linear and rarely analytical. NASA Goddard Space Flight Center (GSFC) is developing a pre-Phase A tool called Tradespace Analysis Tool for Constellations (TAT-C) to initiate constellation mission design. The tool will allow users to explore the tradespace between various performance, cost and risk metrics (as a function of their science mission) and select Pareto optimal architectures that meet their requirements. This paper will describe the different types of constellations that TAT-Cs Tradespace Search Iterator is capable of enumerating (homogeneous Walker, heterogeneous Walker, precessing type, ad-hoc) and their impact on key performance metrics such as revisit statistics, time to global access and coverage. We will also discuss the ability to simulate phased deployment of the given constellations, as a function of launch availabilities and/or vehicle capability, and show the impact on performance. All performance metrics are calculated by the Data Reduction and Metric Computation module within TAT-C, which issues specific requests and processes results from the Orbit and Coverage module. Our TSI is also capable of generating tradespaces for downlinking imaging data from the constellation, based on permutations of available ground station networks - known (default) or customized (by the user). We will show the impact of changing ground station options for any given constellation, on data latency and required communication bandwidth, which in turn determines the responsiveness of the space system.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN65923 , International Astronautical Congress (IAC); Sep 25, 2017 - Sep 29, 2017; Adelaide; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-21355 , International Planetary Probe Workshop (IPPW-12); Jun 15, 2015 - Jun 19, 2015; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD project's second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6m, with cone angles of 60 and 70 deg. To meet NASA and commercial near term objectives, the HIAD team must scale the current technology up to 12-15m in diameter. The HIAD project's experience in scaling the technology has reached a critical juncture. Growing from a 6m to a 15m class system will introduce many new structural and logistical challenges to an already complicated manufacturing process. Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15m-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6m aeroshell (the largest HIAD built to date), a 12m aeroshell has four times the cross-sectional area, and a 15m one has over six times the area. This means that fabrication and test procedures will need to be reexamined to account for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the structural webbing, initial inflation of tori, and stitching of F-TPS gores. Additionally, new approaches and hardware will be required for handling and ground testing of both individual tori and the fully assembled HIADs. There are also noteworthy benefits of scaling up the HIAD aeroshell to 15m-class system. Two complications in working with handmade textiles structures are the non-linearity of the materials and the role of human accuracy during fabrication. Larger, more capable, HIAD structures should see much larger operational loads, potentially bringing the structural response of the materials out of the non-linear regime and into the preferred linear response range. Also, making the reasonable assumption that the magnitude of fabrication accuracy remains constant as the structures grow, the relative effect of fabrication errors should decrease as a percentage of the textile component size. Combined, these two effects improve the predictive capability and the uniformity of the structural response for a 12-15m class HIAD. In this paper, the challenges and associated mitigation plans related to scaling up the HIAD stacked-torus aeroshell to a 15m class system will be discussed. In addition, the benefits of enlarging the structure will be further explored.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN29077 , IEEE Aerospace Conference; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD project's second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6 meters, with cone angles of 60 and 70 degrees. To meet NASA and commercial near-term objectives, the HIAD team must scale the current technology up to 12-15 meters in diameter. Therefore, the HIAD project's experience in scaling the technology has reached a critical juncture. Growing from a 6-meter to a 15-meter class system will introduce many new structural and logistical challenges to an already complicated manufacturing process. Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15-meter-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6-meter aeroshell (the largest HIAD built to date), a 12-meter aeroshell has four times the cross-sectional area, and a 15-meter one has over six times the area. This means that fabrication and test procedures will need to be reexamined to account for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the structural webbing, initial inflation of tori, and stitching of F-TPS gores. Additionally, new approaches and hardware will be required for handling and ground testing of both individual tori and the fully assembled HIADs. There are also noteworthy benefits of scaling up the HIAD aeroshell to a 15m-class system. Two complications in working with handmade textile structures are the non-linearity of the material components and the role of human accuracy during fabrication. Larger, more capable, HIAD structures should see much larger operational loads, potentially bringing the structural response of the material components out of the non-linear regime and into the preferred linear response range. Also, making the reasonable assumption that the magnitude of fabrication accuracy remains constant as the structures grow, the relative effect of fabrication errors should decrease as a percentage of the textile component size. Combined, these two effects improve the predictive capability and the uniformity of the structural response for a 12-15-meter HIAD. In this presentation, a handful of the challenges and associated mitigation plans will be discussed, as well as an update on current manufacturing and testing that addressing these challenges.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN30768 , International Planetary Probe Workshop (IPPW 2016); Jun 13, 2016 - Jun 17, 2016; Laurel, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...