ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-27
    Description: We present a lean fast-transfer architecture concept for a first human mission to Mars that utilizes current technologies and two pivotal parameters: an end-to-end Mars mission duration of approximately one year, and a deep space habitat of approximately 50 metric tons. These parameters were formulated by a 2012 deep space habitat study conducted at the NASA Johnson Space Center (JSC) that focused on a subset of recognized high- engineering-risk factors that may otherwise limit space travel to destinations such as Mars or near-Earth asteroid (NEA)s. With these constraints, we model and promote Mars mission opportunities in the 2030s enabled by a combination of on-orbit staging, mission element pre-positioning, and unique round-trip trajectories identified by state-of-the-art astrodynamics algorithms.
    Keywords: Space Sciences (General)
    Type: JSC-CN-29323 , AIAA Space 2013 Conference; 10-12 Sept. 2013; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Human space flight in the US and other space-faring countries is faced with a twin challenge that is likely to persist for many years: flat or declining budgets along with an expectation of continuing, significant achievements. A partial solution may involve increased participation by multiple commercial competitors with the promise - albeit yet to be fully demonstrated - of much-reduced costs. That said, most commercial goals are concentrated on low-Earth orbit (LEO) for the time being, leaving human trips beyond Earth orbit (BED) as governmental initiatives. The past decade, beginning with the 1999/2000 Decadal Planning Team (DPT)/NASA Exploration Team (NExT) human space flight studies for the White House Office of Management and Budget (http://history.nasa.gov/DPT/DPT.htm), can arguably be described as a Golden Age of engineering design, strategic planning, technology capability prioritization, and development programs on the International Space Station (ISS). However, cynics have criticized the same period as little more than PowerPoint presentations, and unfocused technology investments with only limited progress toward a goal of human space flight beyond the immediate vicinity of the Earth. We disagree with the cynics. Experience with the ISS on increasingly sophisticated capabilities have prepared international partners to deploy a major "stepping stone" for human space flight: a habitation system in free space beyond low-Earth orbit. Such an achievement would be a major milestone in human space flight and, very likely, an essential demonstration site for subsequent, very ambitious exploration missions such as to Mars. Developing critical capabilities for human voyages beyond LEO, such as Earth-Moon libration points, offers, as just one example, easy return to Earth within days (see, e.g., Farquhar 1971 (Aeronautics & Astronautics, July, p. 59ff), Thronson, Lester, and Talay 2011 (http://www.thespacereview.com/article/1756/1), and Lester 2012 (http://www.thespacereview.com/article/1650/1). Use of Earth-Moon libration points as sites for early demonstrations of capabilities necessary for human missions to Mars, for example, contrasts sharply with using missions to near-Earth asteroids (NEAs) for that purpose.
    Keywords: Space Sciences (General)
    Type: GSFC.JA.5884.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: Long-duration human capabilities beyond low Earth orbit (LEO), either in support of or as an alternative to lunar surface operations, have been assessed at least since the late 1960s. Over the next few months, we will present short histories of concepts for long-duration, free-space human habitation beyond LEO from the end of the Apollo program to the Decadal Planning Team (DPT)/NASA Exploration Team (NExT), which was active in 1999 2000 (see Forging a vision: NASA s Decadal Planning Team and the origins of the Vision for Space Exploration , The Space Review, December 19, 2005). Here we summarize the brief existence of the Future In-Space Operations (FISO) working group in 2005 2006 and its successor, a telecon-based colloquium series, which we co-moderate.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN8041
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Future space science missions developed to achieve the most ambitious goals are likely to be complex, large, publicly and professionally very important, and at the limit of affordability. Consequently, it may be valuable if such missions can be upgraded, repaired, and/or deployed in space, either with robots or with astronauts. In response to a Request for Information from the US National Research Council panel on Science Opportunities Enabled by NASA's Constellation System, we developed a concept for astronaut-based in-space servicing at the Earth-Moon L1,2 locations that may be implemented by using elements of NASA's Constellation architecture. This libration point jobsite could be of great value for major heliospheric and astronomy missions operating at Earth-Sun Lagrange points. We explored five alternative servicing options that plausibly would be available within about a decade. We highlight one that we believe is both the least costly and most efficiently uses Constellation hardware that appears to be available by mid-next decade: the Ares I launch vehicle, Orion/Crew Exploration Vehicle, Centaur vehicle, and an airlock/servicing node developed for lunar surface operations. Our concept may be considered similar to the Apollo 8 mission: a valuable exercise before descent by astronauts to the lunar surface.
    Keywords: Space Sciences (General)
    Type: 59th International Astronautical Conference/ International Astronautical Federation (IAC-08-A5.3.6); Sep 28, 2008 - Oct 03, 2008; Glasgow, Scotland; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: NASA s planned Ares V cargo vehicle with its 10 meter diameter fairing and ~60,000 kg payload mass to L2 offers the potential to launch entirely new classes of space science missions such as 8-meter monolithic aperture telescopes, 12-meter aperture x-ray telescopes, 16 to 24 meter segmented telescopes and highly capable outer planet missions. The paper will summarize the current Ares V baseline performance capabilities and review potential mission concepts enabled by these capabilities.
    Keywords: Space Sciences (General)
    Type: M09-0580 , SPIE UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts IV; Aug 03, 2009 - Aug 05, 2009; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: This viewgraph presentation discusses the science that can be accomplished by returning humans to space, and to the moon. With modest modifications to the planned future Constellation vehicle (i.e., the Orion Crew Exploration Vehicle), astronomers, and other scientist can anticipate major scientific accomplishments that would not otherwise be possible. Much of this can be attributed to the experience gained from the International Space Station Construction and the Hubble Space Telescope servicing missions.
    Keywords: Space Sciences (General)
    Type: Znternatiottal Space University; Feb 20, 2008 - Feb 22, 2008; Strasbourg; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...