ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: The Mars Science Laboratory Curiosity rover arrived at Mars in August 2012 with a primary goal of characterizing the habitability of ancient and modern environments. Curiosity landed in Gale crater to study a sequence of ~3.5 Ga old sedimentary rocks that, based on orbital visible/near-infrared reflectance spectra, contain secondary minerals that suggest deposition and/or alteration in liquid water. The sedimentary sequence that comprises the lower slopes of Mount Sharp within Gale crater may preserve a dramatic shift on early Mars from a relatively warm and wet climate to a cold and dry climate based on a transition from smectite-bearing strata to sulfate-bearing strata. The rover is equipped with cameras and geochemical and mineralogical instruments to examine the sedimentology and identify compositional changes within the stratigraphy. These observations provide information about variations in depositional and diagenetic environments over time. The Chemistry and Mineralogy (CheMin) instrument is one of two internal laboratories on Curiosity and includes a transmission X-ray diffractometer (XRD) and X-ray fluorescence (XRF) spectrometer with a Co-K source. CheMin measures loose sediment samples scooped from the surface and drilled rock powders. The XRD provides quantitative mineralogy of scooped and drilled samples to a detection limit of ~1 wt.%. Curiosity has traversed 〉20 km since landing and has primarily been exploring the site of a predominantly ancient lake environment fed by groundwater and streams emanating from the crater rim. Results from CheMin demonstrate an incredible diversity in the mineralogy of fluvio-lacustrine rocks that signify variations in source rock composition, sediment transport mechanisms, and depositional and diagenetic fluid chemistry. Abundant trioctahedral smectite and magnetite at the base of the section may have formed from low-salinity pore waters with a circumneutral pH within lake sediments. A transition to dioctahedral smectite, hematite, and Ca-sulfate going up section suggests a change to more saline and oxidative aqueous conditions within the lake waters themselves and/or within diagenetic fluids. The primary minerals detected in fluvio-lacustrine samples by CheMin also suggest diversity in the igneous source regions for the sediments, where abundant pyroxene and plagioclase in most samples suggest a basaltic protolith, but sanidine and pyroxene in one sample may have been sourced from a potassic trachyte, and tridymite and sanidine in another sample may have been transported from a rhyolitic source. Crystal chemistry of major phases in each sample have been calculated from refined unit-cell parameters, providing further constraints on aqueous alteration processes and igneous protoliths for the sediments. Perhaps one of the biggest mysteries revealed by the CheMin instrument is the high abundance of X-ray amorphous materials (15 to 73 wt.%) in all samples measured to date. X-ray amorphous materials were detected by CheMin based on the observation of broad humps in XRD patterns. How these materials formed, their composition, and why they persist near the martian surface remain a topic of debate. The sedimentology and composition of the rocks analyzed by Curiosity demonstrate that habitable environments persisted intermittently on the surface or in the subsurface of Gale crater for perhaps more than a billion years.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN68597 , Mineralogical Society of America Centennial (1919-2019) Symposium; Jun 20, 2019 - Jun 21, 2019; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: The CheMin (Chemistry and Mineralogy) instrument on the Mars Science Laboratory rover Curiosity uses a CCD detector and a Co-anode X-ray tube source to acquire both mineralogy (from the pattern of Co diffraction) and chemical information (from energies of fluoresced X-rays). A key component of the CheMin instrument is the ability to move grains within sample cells during analysis, providing multiple, random grain orientations that disperse diffracted X-ray photons along Debye rings rather than producing discrete Laue spots. This movement is accomplished by piezoelectric vibration of the sample cells. A cryocooler is used to maintain the CCD at a temperature at about -50 C in order to obtain energy resolution better than 250 eV, allowing discrimination of diffracted Co K X-rays from Fe K and other fluorescent X-rays. A detailed description of CheMin is provided in [1]. The CheMin flight model (FM) is mounted within the body of Curiosity and has been operating on Mars since August 6, 2012. An essentially identical sister instrument, the CheMin demonstration model (DM), is operated in a Mars environment chamber at JPL.
    Keywords: Space Sciences (General)
    Type: JSC-CN-27876 , 44th Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: X-ray diffraction (XRD) data collected of the Rocknest samples by the CheMin instrument on Mars Science Laboratory suggest the presence of poorly crystalline or amorphous materials [1], such as nanophase weathering products or volcanic and impact glasses. The identification of the type(s) of X-ray amorphous material at Rocknest is important because it can elucidate past aqueous weathering processes. The presence of volcanic and impact glasses would indicate that little chemical weathering has occurred because glass is highly susceptible to aqueous alteration. The presence of nanophase weathering products, such as allophane, nanophase iron-oxides, and/or palagonite, would indicate incipient chemical weathering. Furthermore, the types of weathering products present could help constrain pH conditions and identify which primary phases altered to form the weathering products. Quantitative analysis of phases from CheMin data is achieved through Reference Intensity Ratios (RIRs) and Rietveld refinement. The RIR of a mineral (or mineraloid) that relates the scattering power of that mineral (typically the most intense diffraction line) to the scattering power of a separate mineral standard such as corundum [2]. RIRs can be calculated from XRD patterns measured in the laboratory by mixing a mineral with a standard in known abundances and comparing diffraction line intensities of the mineral to the standard. X-ray amorphous phases (e.g., nanophase weathering products) have broad scattering signatures rather than sharp diffraction lines. Thus, RIRs of X-ray amorphous materials are calculated by comparing the area under one of these broad scattering signals with the area under a diffraction line in the standard. Here, we measured XRD patterns of nanophase weathering products (allophane, aluminosilicate gel, and ferrihydrite) mixed with a mineral standard (beryl) in the CheMinIV laboratory instrument and calculated their RIRs to help constrain the abundances of these phases in the Rocknest samples.
    Keywords: Space Sciences (General)
    Type: JSC-CN-27875 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-20
    Description: Carbon dioxide is an essential atmospheric component in martian climate models that attempt to reconcile a faint young sun with planet-wide evidence of liquid water at the planets surface in the Noachian and Early Hesperian. Current estimates of ancient martian CO2 levels, derived from global inventories of carbon, and orbital detections of Noachian and Early Hesperian clay mineral-bearing terrains indicate CO2 levels that are unable to support warm and wet conditions. These estimates are subject to various sources of uncertainty however. Mineral and contextual sedimentary environmental data collected by the Mars Science Laboratory rover Curiosity in Gale Crater provide a more direct means of estimating the atmospheric partial pressure of CO2 (PCO2) coinciding with a long-lived lake system in Gale crater at ~3.5 Ga. Results from a reaction-transport model, which simulates mineralogy observed within the Sheepbed member at Yellowknife Bay by coupling mineral equilibria with carbonate precipitation kinetics and rates of sedimentation, indicate atmospheric PCO2 levels in the 10s mbar range. At such low PCO2 levels, climate models are unable to warm Hesperian Mars anywhere near the freezing point of water and other gases are required to raise atmospheric pressure to prevent lakes from boiling away. Thus, lacustrine features of Gale formed in a cold environment by a mechanism yet to be determined, or the climate models still lack an essential component that would serve to elevate surface temperatures, at least temporally and/or locally, on Hesperian Mars. Our results also impose restrictions on the potential role of atmospheric CO2 in inferred warmer conditions of the Noachian.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN30217 , Goldschmidt Conference; Jun 26, 2016 - Jul 01, 2016; Yokohama; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: Many planetary surface processes (like physical and chemical weathering, water activity, diagenesis, low-temperature or impact metamorphism, and biogenic activity) leave traces of their actions as features in the size range 10s to 100s of micron. The Mapping alpha-particle X-ray Spectrometer ("Map-X") is intended to provide chemical imaging at 2 orders of magnitude higher spatial resolution than previously flown instruments, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN18153 , International Workshop on Instrumentation for Planetary Missions (IPM-2014); Nov 04, 2014 - Nov 07, 2014; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...