ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (12)
  • Lunar and Planetary Science and Exploration  (8)
  • Space Sciences (General)  (4)
  • 2005-2009  (12)
  • 1
    Publication Date: 2018-06-06
    Description: We present the mass X-ray observable scaling relationships for clusters of galaxies using the XMM-Newton cluster catalog of Snowden et al. Our results are roughly consistent with previous observational and theoretical work, with one major exception. We find 2-3 times the scatter around the best fit mass scaling relationships as expected from cluster simulations or seen in other observational studies. We suggest that this is a consequence of using hydrostatic mass, as opposed to virial mass, and is due to the explicit dependence of the hydrostatic mass on the gradients of the temperature and gas density profiles. We find a larger range of slope in the cluster temperature profiles at radii 500 than previous observational studies. Additionally, we find only a weak dependence of the gas mass fraction on cluster mass, consistent with a constant. Our average gas mass fraction results also argue for a closer study of the systematic errors due to instrumental calibration and modeling method variations between analyses. We suggest that a more careful study of the differences between various observational results and with cluster simulations is needed to understand sources of bias and scatter in cosmological studies of galaxy clusters.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: The viability of photovoltaics on the Lunar and Martian surfaces may be determined by their ability to withstand significant degradation in the Lunar and Martian environments. One of the greatest threats is posed by fine dust particles which are continually blown about the surfaces. In an effort to determine the extent of the threat, and to investigate some abatement strategies, a series of experiments were conducted outdoors and in the Moon and Mars environmental chamber at the Florida Solar Energy Center. Electrodynamic dust shield prototypes based on the electric curtain concept have been developed by our collaborators at the Kennedy Space Center [1]. These thin film layers can remove dust from surfaces and prevent dust accumulation. Several types of dust shields were designed, built and tested under high vacuum conditions and simulated lunar gravity to validate the technology for lunar exploration applications. Gallium arsenide, single crystal and polycrystalline silicon photovoltaic integrated devices were designed, built and tested under Moon and Mars environmental conditions as well as under ambient conditions. Photovoltaic efficiency measurements were performed on each individual cell with the following configurations; without an encapsulation layer, with a glass covering, and with various thin film dust shields. It was found that the PV efficiency of the hybrid systems was unaffected by these various thin film dust shields, proving that the optical transmission of light through the device is virtually uninhibited by these layers. The future goal of this project is to incorporate a photovoltaic cell as the power source for the electrodynamic dust shield system, and experimentally show the effective removal of dust obstructing any light incident on the cell, thus insuring power production is maximized over time.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-096 , KSC-2009-115
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Water is a unique substance in the protoplanetary nebula since both solid and gaseous phases coexist in large quantities. Quantitative estimates of their relative abundances are important parameters regarding the physical state of the nebula and planet formation processes. This new model is based on computing the chemical evolution of water molecules until its partial pressure is sufficient to pierce the vapor pressure curve for water. The point at which this occurs relative to its steady state values determines final gas/ice ratios. The wide range of temperatures and densities in typical protoplanetary disks result in a range of gadice ratios. It is found that although ice dominates the mid and far nebula, water vapor is predominant in the centerplane region of the near nebula and above the disk photosphere. An interesting near nebula effect is the appearance of a cloud of water ice at the temperature inversion elevation surrounded by vapor above and below. This work is partially supported by the NASA Astrobiology Institute.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2006 DPS Meeting; Oct 08, 2006 - Oct 13, 2006; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The presentations will be given during the X-Prize symposium, exploring the multi-faceted dimensions of spaceflight ranging from the technical developments necessary to achieve safe routine flight to and from and through space to the new personal business opportunities and economic benefits that will open in space and here on Earth. The symposium will delve into the technical, regulatory, market and financial needs and challenges that must be met in charting and executing the incremental developments leading to Personal Spaceflight and the opening of a Place Called Space. The presentation covers facets of human space flight including descriptions of life in space, the challenges of delivering medical care in space, and the preparations needed for safe and productive human travel to the moon and Mars.
    Keywords: Space Sciences (General)
    Type: X-Prize Cup Competition; Oct 20, 2006 - Oct 21, 2006; Las Cruces; Mexico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The Solar-B mission is a collaboration between the Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, the National Aeronautics and Space Administration (NASA) and the Particle Physics and Astronomy Research Council (PPARC) of the United Kingdom and the European Space Agency. The principal scientific goals of the mission are to understand the processes of magnetic field generation, transport and ultimate dissipation of solar magnetic fields and how the release of magnetic energy is responsible for the heating and structuring of the chromosphere and corona. The scientific payload consists of three instruments: the Solar Optical Telescope that consists of the Optical Telescope Assembly and the Focal Plane Package (FPP), the X-ray Telescope and the EUV Imaging Spectrometer Each instrument is a result of the combined talents of all the members of the international team and their design and performance is described in separate papers in this session. The instruments are designed to work together as an 'observatory' simultaneously studying the target, at which the spacecraft is pointed, at different levels in the atmosphere. The spacecraft is scheduled for launch in September 2006 from the Uchinoura Space Center into a 600 km circular, sun-synchronous, polar orbit with a nominal elevation of 97.9 degrees. The orbit provides at least two morning and two evening contacts in Japan. Morning contacts are used for recovering quick look science data and the evening contacts for uploading commands. In addition ESA will provide 15 contacts per day from the Norwegian high latitude (78deg 14' N) ground station at Svalbard. The data downloads are transmitted to the ISAS Sirius database. They will be reformatted into FITS files and archived as Level 0 data on the ISAS DARTS system and made available to the scientific community. Scientific operations will be conducted from the IS AS facility located in Sagamihara, Japan. They are separated into planning, implementation and archiving. The planning process involves monthly, weekly and daily planning meetings. All scientific data will be made available after the first six month approximately one week after its collection.
    Keywords: Space Sciences (General)
    Type: American Astronomical Society Solar Physics Division Meeting; Jun 25, 2006 - Jun 30, 2006; Durham, NH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important, either between a robotic drill and humans on Earth, or a human-tended drill and its visiting crew. The Mars Analog Rio Tinto Experiment (MARTE) is a current project that studies and simulates the remote science operations between an automated drill in Spain and a distant, distributed human science team. The Drilling Automation for Mars Exploration (DAME) project, by contrast: is developing and testing standalone automation at a lunar/martian impact crater analog site in Arctic Canada. The drill hardware in both projects is a hardened, evolved version of the Advanced Deep Drill (ADD) developed by Honeybee Robotics for the Mars Subsurface Program. The current ADD is capable of 20m, and the DAME project is developing diagnostic and executive software for hands-off surface operations of the evolved version of this drill. The current drill automation architecture being developed by NASA and tested in 2004-06 at analog sites in the Arctic and Spain will add downhole diagnosis of different strata, bit wear detection, and dynamic replanning capabilities when unexpected failures or drilling conditions are discovered in conjunction with simulated mission operations and remote science planning. The most important determinant of future 1unar and martian drilling automation and staffing requirements will be the actual performance of automated prototype drilling hardware systems in field trials in simulated mission operations. It is difficult to accurately predict the level of automation and human interaction that will be needed for a lunar-deployed drill without first having extensive experience with the robotic control of prototype drill systems under realistic analog field conditions. Drill-specific failure modes and software design flaws will become most apparent at this stage. DAME will develop and test drill automation software and hardware under stressful operating conditions during several planned field campaigns. Initial results from summer 2004 tests show seven identifi distinct failure modes of the drill: cuttings-removal issues with low-power drilling into permafrost, and successful steps at executive control and initial automation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 56th IAC/IAF, AIAA Meeting; 17-21, 2005; Fukuoka; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: From May of 1973 to February of 1974, the National Aeronautics and Space Administration conducted a series of three manned missions to the Skylab space station, a voluminous vehicle largely descendant of Apollo hardware, and America s first space station. The crewmembers of these three manned missions spent record breaking durations of time in microgravity (28 days, 59 days and 84 days, respectively) and gave the U.S. space program its first experiences with long-duration space flight. The program overcame a number of obstacles (including a significant crippling of the Skylab vehicle) to conduct a lauded scientific program that encompassed life sciences, astronomy, solar physics, materials sciences and Earth observation. Skylab has more to offer than the results of its scientific efforts. The operations conducted by the Skylab crews and ground personnel represent a rich legacy of operational experience. As we plan for our return to the moon and the subsequent manned exploration of Mars, it is essential to utilize the experiences and insights of those involved in previous programs. Skylab and SMEAT (Skylab Medical Experiments Altitude Test) personnel have unique insight into operations being planned for the Constellation Program, such as umbilical extra-vehicular activity and water landing/recovery of long-duration crewmembers. Skylab was also well known for its habitability and extensive medical suite; topics which deserve further reflection as we prepare for lunar habitation and missions beyond Earth s immediate sphere of influence. The Skylab Medical Operations Summit was held in January 2008. Crewmembers and medical personnel from the Skylab missions and SMEAT were invited to participate in a two day summit with representatives from the Constellation Program medical operations community. The purpose of the summit was to discuss issues pertinent to future Constellation operations. The purpose of this document is to formally present the recommendations of the Skylab and SMEAT participants.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-18276
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The Magnetic Transition Region Probe is a space telescope designed to measure the magnetic field at several heights and temperatures in the solar atmosphere, providing observations spanning the chromospheric region where the field is expected to become force free. The primary goal is to provide an early warning system (hours to days) for solar energetic particle events that pose a serious hazard to astronauts in deep space and to understand the source regions of these particles. The required magnetic field data consist of simultaneous circular and linear polarization measurements in several spectral lines over the wavelength range from 150 to 855 nm. Because the observations are photon limited an optical telescope with a large (〉18sq m) collecting area is required. To keep the heat dissipation problem manageable we have chosen to implement MTRAP with six separate Gregorian telescopes, each with approx. 3 sq m collecting area, that are brought to a common focus. The large field of view (5 x 5 arcmin(sup 2)) and angular resolution (0.025 arcsec pixels) require large detector arrays and, because of the requirements on signal to noise (10(exp 3)), pixels with large full well depths to reduce the readout time and improve the temporal resolution. The optical and engineering considerations that have gone into the development of a concept that meets MTRAP's requirements are described.
    Keywords: Space Sciences (General)
    Type: SPIE Paper 5901-40 , SPIE Optics and Photonics; Jul 31, 2005 - Aug 04, 2005; San Diego, CA; United States|Proceedings of SPIE; 5901
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Spectrally tunable liquid crystal filters provide numerous advantages and several challenges in space applications. We discuss the tradeoffs in design elements for tunable liquid crystal birefringent filters with special consideration required for space exploration applications. In this paper we present a summary of our development of tunable filters for NASA space exploration. In particular we discuss the application of tunable liquid crystals in guidance navigation and control in space exploration programs. We present a summary of design considerations for improving speed, field of view, transmission of liquid crystal tunable filters for space exploration. In conclusion, the current state of the art of several NASA LaRC assembled filters is presented and their performance compared to the predicted spectra using our PolarTools modeling software.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2007 SPIE Photonics and Optics Conference; Aug 26, 2007 - Aug 30, 2007; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: As humans venture farther from Earth for longer durations, it will become essential for those on the journey to have significant control over the scheduling of their own activities as well as the activities of their companion systems and robots. However, the crew will not do all the scheduling; timelines will be the result of collaboration with ground personnel. Emerging technologies such as in-space message buses, delay-tolerant networks, and in-space internet will be the carriers on which the collaboration rides. Advances in scheduling technology, in the areas of task modeling, scheduling engines, and user interfaces will allow the crew to become virtual scheduling experts. New concepts of operations for producing the timeline will allow the crew and the ground support to collaborate while providing safeguards to ensure that the mission will be effectively accomplished without endangering the systems or personnel.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEEAC Paper 1415 , IEEE Aerospace Conference 2007; Mar 03, 2007 - Mar 10, 2007; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...