ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: The energetic charged particle, interplanetary magnetic field, and plasma characteristics of the 'Bastille Day' shock and ejecta/magnetic cloud events at 1 AU occurring over the days 14-16 July 2000 are described. Profiles of MeV (WIND/LEMT) energetic ions help to organize the overall sequence of events from the solar source to 1 AU. Stressed are analyses of an outstanding magnetic cloud (MC2) starting late on 15 July and its upstream shock about 4 hours earlier in WIND magnetic field and plasma data. Also analyzed is a less certain, but likely, magnetic cloud (MC1) occurring early on 15 July; this was separated from MC2 by its upstream shock and many heliospheric current sheet (HCS) crossings. Other HCS crossings occurred throughout the 3-day period. Overall this dramatic series of interplanetary events caused a large multi-phase magnetic storm with min Dst lower than -300 nT. The very fast solar wind speed (greater than or equal to 1100 km/s) in and around the front of MC2 (for near average densities) was responsible for a very high solar wind ram pressure driving in the front of the magnetosphere to geocentric distances estimated to be as low as approx. 5 R(sub E), much lower than the geosynchronous orbit radius. This was consistent with magnetic field observations from two GOES satellites which indicated they were in the magnetosheath for extended times. A static force free field model is used to fit the two magnetic cloud profiles providing estimates of the clouds' physical and geometrical properties. MC2 was much larger than MCI, but their axes were nearly antiparallel, and their magnetic fields had the same left-handed helicity. MC2's axis and its upstream shock normal were very close to being perpendicular to each other, as might be expected if the cloud were driving the shock at the time of observation. The estimated axial magnetic flux carried by MC2 was 52 x 10(exp 20) Mx, which is about 5 times the typical magnetic flux estimated for other magnetic clouds in the WIND data over its first 4 years and is 17 times the flux of MC1. This large flux is due to both the strong axially-directed field of MC2 (46.8 nT on the axis) and the large radius (R(sub 0) = 0.189 AU) of the flux tube. MC2's average speed is consistent with the expected transit time from a halo-CME to which it is apparently related.
    Keywords: Space Radiation
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We present Van Allen Probe observations of electromagnetic ion cyclotron (EMIC) waves triggered solely due to individual substorm-injected ions in the absence of storms or compressions of the magnetosphere during 9 August 2015. The time at which the injected ions are observed directly corresponds to the onset of EMIC waves at the location of Van Allen Probe A (L = 5.5 and 18:06 magnetic local time). The injection was also seen at geosynchronous orbit by the Geostationary Operational Environmental Satellite and Los Alamos National Laboratory spacecraft, and the westward(eastward) drift of ions(electrons) was monitored by Los Alamos National Laboratory spacecraft at different local times. The azimuthal location of the injection was determined by tracing the injection signatures backward intime to their origin assuming a dipolar magnetic field of Earth. The center of this injection location wasdetermined to be close to 20:00 magnetic local time. Geostationary Operational Environmental Satelliteand ground magnetometer responses confirm substorm onset at approximately the same local time.The observed EMIC wave onsets at Van Allen Probe were also associated with a magnetic field decrease.The arrival of anisotropic ions along with the decrease in the magnetic field favors the growth of the EMICwave instability based on linear theory analysis.
    Keywords: Space Radiation
    Type: GSFC-E-DAA-TN63544 , Journal of Geophysical Research: Space Physics (e-ISSN 2169-9402); 123; 6; 4921-4938
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...