ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: In this letter, we present for the first time evidence in the BATSE data for a prompt high-energy (25-300 keV) afterglow component from a Gamma-Ray Burst (GRB), GRB980923. The event ranks third highest in fluence (〉25 keV) in the BATSE catalog and consists of a period of rapid variability lasting about 40 s followed by a smooth power law emission tail lasting about 400 s beyond the trigger time. An abrupt change in spectral shape is found when the tail becomes noticeable. Our analysis reveals that the spectral evolution in the tail of the burst mimics that of a cooling synchrotron spectrum, similar to the spectral evolution of the low-energy afterglows for GRBS. This evidence for a separate emission component is consistent with the internal-external shock scenario in the relativistic fireball picture. In particular, it illustrates that the external shocks can be generated during the primary gamma-ray emission phase, as in the case of GRB990123.
    Keywords: Space Radiation
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: The current scenario for gamma-ray bursts (GRBs) involves internal shocks for the prompt GRB emission phase and external shocks for the afterglow phase. Assuming synchrotron emission from energetic shocked electrons. GRB spectra observed with a low-energy power-law spectral index greater than -2/3 (for positive photon number indices E(sup alpha) indicate a problem with this model. The remaining spectra can test the synchrotron shock model prediction that the emission from a single distribution of electrons, cooling rapidly, is responsible for both the low-energy and high-energy power-low portions of the spectra. We find that the inferred relationship between the two spectral indices of observed GRB spectra is inconsistent with the constraints from the model, posing another problem for the synchrotron shock emission model. To overcome this problem, we describe a model where the average of -1, rather than the value of -3/2 predicted for cooling electrons. Situations where this might arise have been discussed in other contexts, and involve deceleration of the internal shocks during the GRB phase.
    Keywords: Space Radiation
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We present evidence for burst emission from SGR 1900 + 14 with a power-law high-energy spectrum extending beyond 500 keV. Unlike previous detections of high-energy photons during bursts from soft gamma repeaters (SGRs), these emissions are not associated with extraordinarily bright flares. Not only is the emission hard, but the spectra are better fitted by D. Band's gamma-ray burst (GRB) function rather than by the traditional optically thin thermal bremsstrahlung model. We find that the spectral evolution within these hard events obeys a hardness/intensity anticorrelation. Temporally, these events are distinct from typical SGR burst emissions in that they are longer (approximately 1 s) and have relatively smooth profiles. Despite a difference in peak luminosity of approximately 〉 10(exp 11) between these bursts from SGR 1900 + 14 and cosmological GRBs, there are striking temporal and spectral similarities between the two kinds of bursts, aside from spectral evolution. We outline an interpretation of these events in the context of the magnetar model.
    Keywords: Space Radiation
    Type: Astrophysical Journal; 527; L47-L50
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: We present evidence for burst emission from SGR 1900+14 with a power-law high energy spectrum extending beyond 500 kev. Unlike previous detections of high energy photons during bursts from SGRS, these emissions are not associated with high-luminosity burst intervals. Not only is the emission hard, but the spectra are better fit by Band's GRB function rather than by the traditional optically-thin thermal bremsstrahlung model. We find that the spectral evolution within these hard events obeys a hardness/intensity anti-correlation. Temporally, these events are distinct from typical SGR burst emissions in that they are longer (about 1 s) and have relatively smooth profiles. Despite a difference in peak luminosity of 〉 1E+ll between these bursts from SGR 1900+14 and cosmological GRBS, there are striking temporal and spectral similarities between the two kinds of bursts, aside from spectral evolution. We outline an interpretation of these events in the context of the magnetar model.
    Keywords: Space Radiation
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...