ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The NASA/JPL Optical Communication Telescope Laboratory (OCTL) was built for dedicated research and development toward supporting free-space laser communications from space. Recently, the OCTL telescope was used to support the Lunar Laser Communication Demonstration (LLCD) from the Lunar Atmospheric Dust Environment Explorer (LADEE) spacecraft and is planned for use with the upcoming Optical Payload for Lasercomm Science (OPALS) demonstration from the International Space Station (ISS). The use of OCTL to support these demonstrations is discussed in this report. The discussion will feed forward to ongoing and future space-to-ground laser communications as it advances toward becoming an operational capability.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: SpaceOps 2014; May 05, 2014 - May 09, 2014; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Objectives of this work are: (1) Investigate methods for quantifying the value of interoperability for deep space missions: A network of optical receive stations Each one potentially owned by a different space agency. Reduces overall cost to any individual agency Provides geographically diverse locations to mitigate weather problems (clouds, wind, rain, dust, etc.) (2) Metrics: a. Total data volume returned over mission duration b. Percent data transferred (PDT) or something similar.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: European Space Agency Optical Link Study Group; Apr 01, 2012; Darmstadt; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: A number of space agencies, including NASA, are considering free-space laser communications as a means for returning higher data-rates from future space missions. In this paper, potential deep-space missions are evaluated to show that with optical communication a 10x increase relative to state-of-the art telecommunication systems could be achieved. The maximum deep-space distance where ground transmitted laser beacons could assist acquisition and tracking; and operating points where optical communication performance degrades faster than the inverse square distance are also discussed.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: SPIE Photonics West; Jan 21, 2012 - Jan 26, 2012; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: A conceptual design study titled Deep-Space Optical Terminals was recently completed for an optical communication technology demonstration from Mars in the 2018 time frame. We report on engineering trades for the entire system, and for individual subsystems including the flight terminal, the ground receiver and the ground transmitter. A point design is described to meet the requirement for greater than 0.25 Gb/s downlink from the nearest distance to Mars of 0.42 AU with a maximum mass and power allocation of 40 kg and 110 W. Furthermore, the concept design addresses link closure at the farthest Mars range of 2.7 AU. Maximum uplink data-rate of 0.3 Mb/s and ranging with 30 cm precision are also addressed.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: Photonics West - Free Space Optical Communications; Jan 22, 2011 - Jan 27, 2011; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: A lunar surface systems study explores the application of optical communications to support a high bandwidth data link from a lunar relay satellite and from fixed lunar assets. The results show that existing 1-m ground stations could provide more than 99% coverage of the lunar terminal at 100Mb/s data rates from a lunar relay satellite and in excess of 200Mb/s from a fixed terminal on the lunar surface. We have looked at the effects of the lunar regolith and its removal on optical samples. Our results indicate that under repeated dust removal episodes sapphire rather than fused silica would be a more durable material for optical surfaces. Disruption tolerant network protocols can minimize the data loss due to link dropouts. We report on the preliminary results of the DTN protocol implemented over the optical carrier.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: 2011 IEEE International Conference on Space Optical Systems and Applications (ICSOS); May 11, 2011 - May 13, 2011; Santa Monica, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: This paper provides an overview of Optical Payload for Lasercomm Science (OPALS) activities and lessons learned during mission operations. Activities described cover the periods of commissioning, prime, and extended mission operations, during which primary and secondary mission objectives were achieved for demonstrating space-to-ground optical communications. Lessons learned cover Mission Operations System topics in areas of: architecture verification and validation, staffing, mission support area, workstations, workstation tools, interfaces with support services, supporting ground stations, team training, procedures, flight software upgrades, post-processing tools, and public outreach.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: AIAA Space Conference and Exhibition; Aug 31, 2015 - Sep 02, 2015; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: Joint CSA/ESA/JAXA/NASA Increment 37 and 38 Science Symposium; May 28, 2013 - May 29, 2013; Webinar; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: A simplified laser communications (lasercom) system architecture, primarily for a deep-space flight transceivers, can be realized by decoupling the lasercom optical components from the host spacecraft using a disturbance-free platform (DFP) developed by Lockheed Martin Space System Company. Unlike conventional lasercom system architectures where a high bandwidth control loop is used to stabilize the optical line-of-sight in the presence of platform disturbance, the DFP package isolates the optical train from the high frequency platform jitter produced by the host. By preventing the vibration from coupling into the optics train, the need for a high bandwidth beam stabilization control loop (including fast steering mirror, detectors, controls and the associated relay optics) is eliminated with possible mass savings.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: SPIE Photonics West; Jan 23, 2006 - Jan 25, 2006; San Jose, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: As NASA proceeds with plans for increased science data return and higher data transfer capacity for science missions, both RF and optical communications are viable candidates for significantly higher-rate communications from deep space to Earth. With the inherent advantages, smaller apertures and larger bandwidths, of optical communications, it is reasonable to expect that at some point in time and combination of increasing distance and data rate, the rapidly emerging optical capabilities would become more advantageous than the more mature and evolving RF techniques. This paper presents a comparison of the burden to a spacecraft by both RF and optical communications systems for data rates of 10, 100, and 1000 Mbps and large distances. Advanced technology for RF and optical communication systems have been considered for projecting capabilities in the 2020 timeframe. For the comparisons drawn, the optical and RF ground terminals were selected to be similar in cost. The RF system selected is composed of forty-five 12-meter antennas, whereas the selected optical system is equivalent to a 10-meter optical telescope. Potential differences in availability are disregarded since the focus of this study is on spacecraft mass and power burden for high-rate mission data, under the assumption that essential communications will be provided by low-rate, high availability RF. For both the RF and optical systems, the required EIRP, for a given data rate and a given distance, was achieved by a design that realized the lowest possible communications subsystem mass (power + aperture) consistent with achieving the lowest technology risk. A key conclusion of this paper is that optical communications has great potential for high data rates and distances of 2.67 AU and beyond, but requires R&D and flight demonstrations to prove out technologies.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: NASA/TM-2007-214459 , E-15723 , K000083 , 12th Ka and Broadband Communications Conference; Sep 27, 2006 - Sep 29, 2006; Naples; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Analyzed optical DTE (direct to earth) and lunar relay satellite link analyses, greater than 200 Mbps downlink to 1m Earth receiver and greater than 1 Mbps uplink achieved with mobile 5cm lunar transceiver, greater than 1Gbps downlink and greater than 10 Mpbs uplink achieved with 10cm stationary lunar transceiver, MITLL (MIT Lincoln Laboratory) 2013 LLCD (Lunar Laser Communications Demonstration) plans to demonstrate 622 Mbps downlink with 20 Mbps uplink between lunar orbiter and ground station; Identified top five technology challenges to deploying lunar optical network, Performed preliminary experiments on two of challenges: (i) lunar dust removal and (ii)DTN over optical carrier, Exploring opportunities to evaluate DTN (delay-tolerant networking) over optical link in a multinode network e.g. Desert RATS.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: 2011 IEEE International Conference on Space Optical Systems and Applications (ICSOS); May 11, 2011 - May 13, 2011; Santa Monica, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...