ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 252 (1996), S. 483-488 
    ISSN: 1617-4623
    Keywords: Degenerate oligonucleotide-primed PCR (DOP-PCR) ; Fluorescence in situ hybridization ; Glycine max ; Yeast artificial chromosomes ; Soybean
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Yeast artificial chromosomes (YACs) are widely used in the physical analysis of complex genomes. In addition to their value in chromosome walking for map-based cloning, YACs represent excellent probes for chromosome mapping using fluorescence in situ hybridization (FISH). We have screened such a library for low-copy-number clones by hybridization to total genomic DNA. Four clones were chosen for chromosome tagging based upon their low or moderate signal. By using degenerate oligonucleotide-primed PCR (DOP-PCR), we were able to use relatively small amounts of soybean YAC DNA, isolated directly by preparative pulsed-field gel electrophoresis, as FISH probes for both metaphase chromosome spreads and interphase nuclei. FISH chromosomal analysis using the three of the clones as probes resulted in relatively simple hybridization patterns consistent with a single homologous locus or two homoeologous loci. The fourth YAC probe resulted in a diffuse hybridization pattern with signal on all metaphase chromosomes. We conclude that YACs represent a valuable source of probes for chromosomal analysis in soybean.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 252 (1996), S. 483-488 
    ISSN: 1617-4623
    Keywords: Key words Degenerate oligonucleotide-primed PCR(DOP-PCR) ; Fluorescence in situ hybridization ; Glycine max ; Yeast artificial chromosomes ; Soybean
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Yeast artificial chromosomes (YACs) are widely used in the physical analysis of complex genomes. In addition to their value in chromosome walking for map-based cloning, YACs represent excellent probes for chromosome mapping using fluorescence in situ hybridization (FISH). We have screened such a library for low-copy-number clones by hybridization to total genomic DNA. Four clones were chosen for chromosome tagging based upon their low or moderate signal. By using degenerate oligonucleotide-primed PCR (DOP-PCR), we were able to use relatively small amounts of soybean YAC DNA, isolated directly by preparative pulsed-field gel electrophoresis, as FISH probes for both metaphase chromosome spreads and interphase nuclei. FISH chromosomal analysis using the three of the clones as probes resulted in relatively simple hybridization patterns consistent with a single homologous locus or two homoeologous loci. The fourth YAC probe resulted in a diffuse hybridization pattern with signal on all metaphase chromosomes. We conclude that YACs represent a valuable source of probes for chromosomal analysis in soybean.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 90 (1995), S. 991-999 
    ISSN: 1432-2242
    Keywords: Glycininae ; Soybean ; Phylogeny ; DNA sequence ; Genomic donors ; Glycine ; Phaseoleae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Soybean [Glycine max (L.) Merr.] evolution was examined by sequencing portions of the restriction fragment length polymorphism (RFLP) locus A-199a of 21 taxa from the Glycininae and 1 from the Phaseoleae. Four hundred nucleotides were determined in each, aligned, and then compared for these taxa. Within the annual soybean subgenus (Soja), the four accessions differed at as many as 2.2% of the nucleotides. Among 13 perennial soybean species (subgenus Glycine), nucleotide variation ranged from 1.7% to 8.4%. The nucleotide difference between the two soybean subgenera was 3.0–7.0%. Nucleotide variation between the genus Glycine and the related genera of Neonotonia, Amphicarpa, Teramnus, and Phaseolus ranged from 8.2% to 16.4%. In addition to nucleotide substitutions, insertions/deletions (indels) differences were also observed and were consistent with nucleotide-based analysis. Cladistic analysis of the A-199a sequences was performed using Wagner parsimony to construct a soybean phylogeny. Sixteen equally parsimonious trees were produced from these data. The trees were 246 steps in length with a consistency index of 0.78. Indels distribution upon the consensus topology revealed a pattern congruent with the nucleotide-based phylogeny. The current taxonomic status of the soybean subgenera and the related genera of Neonotonia, Amphicarpa, and Teramnus were well-supported and appear monophyletic in this analysis. Homoplasy within the subgenus Glycine led to a lack of resolved topology for many of these 13 taxa. However, the Glycine clade topology was consistent with phylogenies proposed using crossing experiments and cpDNA RFLPs. These genera were arranged from ancestral to derived as: Teramnus, Amphicarpa, Neonotonia, and Glycine when Phaseolus vulgaris was used as an outgroup.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...