ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Reviews of Geophysics 50 (2012): RG4003, doi:10.1029/2012RG000389.
    Description: The most important sources of atmospheric moisture at the global scale are herein identified, both oceanic and terrestrial, and a characterization is made of how continental regions are influenced by water from different moisture source regions. The methods used to establish source-sink relationships of atmospheric water vapor are reviewed, and the advantages and caveats associated with each technique are discussed. The methods described include analytical and box models, numerical water vapor tracers, and physical water vapor tracers (isotopes). In particular, consideration is given to the wide range of recently developed Lagrangian techniques suitable both for evaluating the origin of water that falls during extreme precipitation events and for establishing climatologies of moisture source-sink relationships. As far as oceanic sources are concerned, the important role of the subtropical northern Atlantic Ocean provides moisture for precipitation to the largest continental area, extending from Mexico to parts of Eurasia, and even to the South American continent during the Northern Hemisphere winter. In contrast, the influence of the southern Indian Ocean and North Pacific Ocean sources extends only over smaller continental areas. The South Pacific and the Indian Ocean represent the principal source of moisture for both Australia and Indonesia. Some landmasses only receive moisture from the evaporation that occurs in the same hemisphere (e.g., northern Europe and eastern North America), while others receive moisture from both hemispheres with large seasonal variations (e.g., northern South America). The monsoonal regimes in India, tropical Africa, and North America are provided with moisture from a large number of regions, highlighting the complexities of the global patterns of precipitation. Some very important contributions are also seen from relatively small areas of ocean, such as the Mediterranean Basin (important for Europe and North Africa) and the Red Sea, which provides water for a large area between the Gulf of Guinea and Indochina (summer) and between the African Great Lakes and Asia (winter). The geographical regions of Eurasia, North and South America, and Africa, and also the internationally important basins of the Mississippi, Amazon, Congo, and Yangtze Rivers, are also considered, as is the importance of terrestrial sources in monsoonal regimes. The role of atmospheric rivers, and particularly their relationship with extreme events, is discussed. Droughts can be caused by the reduced supply of water vapor from oceanic moisture source regions. Some of the implications of climate change for the hydrological cycle are also reviewed, including changes in water vapor concentrations, precipitation, soil moisture, and aridity. It is important to achieve a combined diagnosis of moisture sources using all available information, including stable water isotope measurements. A summary is given of the major research questions that remain unanswered, including (1) the lack of a full understanding of how moisture sources influence precipitation isotopes; (2) the stationarity of moisture sources over long periods; (3) the way in which possible changes in intensity (where evaporation exceeds precipitation to a greater of lesser degree), and the locations of the sources, (could) affect the distribution of continental precipitation in a changing climate; and (4) the role played by the main modes of climate variability, such as the North Atlantic Oscillation or the El Niño–Southern Oscillation, in the variability of the moisture source regions, as well as a full evaluation of the moisture transported by low-level jets and atmospheric rivers.
    Description: Luis Gimeno would like to thank the Spanish Ministry of Science and FEDER for their partial funding of this research through the project MSM. A. Stohl was supported by the Norwegian Research Council within the framework of the WATER‐SIP project. The work of Ricardo Trigo was partially supported by the FCT (Portugal) through the ENAC project (PTDC/AAC-CLI/103567/2008).
    Description: 2013-05-08
    Keywords: Hydrological cycle ; Ocean evaporation ; Precipitation ; Sources of moisture ; Terrestrial evaporation ; Transport of moisture
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...