ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1890
    Keywords: Dry matter yields ; Sand culture ; Shoot concentrations of P, K, Ca, Mg, S, Mn, Fe, Cu, and Zn ; Sorghum bicolor ; Sorghum bicolor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This study was conducted to determine the effects of different pH regimes on root colonization with four vesicular-arbuscular mycorrhiza (VAM) isolates, and VAM effects on host plant growth and nutrient uptake. Sorghum [Sorghum bicolor (L.) Moench] was grown at pH 4.0, 5.0, 6.0 and 7.0 (±0.1) in hydroponic sand culture with the VAM isolates Glomus etunicatum UT316 (isolate E), G. intraradices UT143 (isolate I), G. intraradices UT126 (isolate B), and an unknown Glomus isolate with no INVAM number (isolate A). Colonization of roots with the different VAM isolates varied differentially with pH. As pH increased, root colonization increased with isolates B and E, remained unchanged with isolate I, and was low at pH 4.0 and high at pH 5.0, 6.0, and 7.0 with isolate A. Isolates E and I were more effective than isolates A and B in promoting plant growth irrespective of pH. Root colonization with VAM appeared to be independent of dry matter yields or dry matter yield responsiveness (dry matter produced by VAM compared to nonmycorrhizal plants). Dry matter yield responsiveness values were higher in plants whose roots were colonized with isolates E and I than with isolates A and B. Shoot P concentrations were lower in plants colonized with isolates E and I than with isolates A and B or nonmycorrhizal plants. This was probably due to the dilution effect of the higher dry matter yields. Neither the VAM isolate nor pH had an effect on shoot Ca, Mg, Zn, Cu, and Mn concentrations, while the VAM isolate affected not only P but also S, K, and Fe concentrations. The pH x VAM interaction was significant for shoot K, Mg, and Cu concentrations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 106 (1988), S. 49-57 
    ISSN: 1573-5036
    Keywords: Al toxicity ; genotype difference ; grain and yield components ; mineral stress ; plant adaptation ; root mass ; soil acidity ; Sorghum bicolor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Genetic manipulation of crops to tolerate mineral stresses is a practical approach to improve productivity of tropical acid soils. Both acid soil tolerant (AS-T) and susceptible (AS-S) sorghum [Sorghum bicolor (L.) Moench] genotypes were grown in the field on an acid ultisol at Quilichao, Colombia, South America at 60% (60-Al) and 40% (40-Al) Al saturation to evaluate plants for growth and yield traits. Except for days to flowering and root mass scores, AS-T genotypes showed no differences in growth (plant height, head length and width, second internode length and diameter, and acid soil toxicity rating) and yield (total and stover dry matter yields, grain yield, head yield, seeds per head, and 100-seed weight) traits when plants were grown at 60-Al or 40-Al. Plants grown at 60-Al were delayed in flowering and had lower root mass scores. The AS-S genotypes showed improvement for the growth and yield traits when grown at 40-Al compared to 60-Al. The growth and yield traits of the AS-S genotypes were usually less favorable for plants grown at 40-Al than the same traits were for the AS-T genotypes grown at 60-Al. Harvest indices (ratio of grain to total plant yield) were no different for the genotypes grown at 40-Al, and only slightly higher for the AS-T genotypes grown at 60-Al. Sorghum genotypes more tolerant to acid soil conditions showed favorable growth and yield traits when grown under relatively severe acid soil (60-Al, pH 4.1) conditions. Certain sorghum genotypes were able to adapt and effectively produce grain when grown on acid soils with few inputs to reduce acid soil toxicity problems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: Glomus fasciculatum ; Glomus intraradices ; Glomus macrocarpum ; mineral nutrition ; soil temperature ; Sorghum bicolor ; uptake of P, K, S, Fe, and Zn ; VAMF ; vesicular-arbuscular mycorrhizal fungi
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Sorghum [Sorghum bicolor (L.) Moench] plants were grown in growth chambers at 20, 25 and 30°C in a low P Typic Argiudoll (3.65 µg P g−1 soil, pH 8.3) inoculated with Glomus fasciculatum, Glomus intraradices, and Glomus macrocarpum to determine effects of vesicular-arbuscular mycorrhizal fungi (VAMF) species on plant growth and mineral nutrient uptake. Sorghum root colonization by VAMF and plant responses to Glomus species were temperature dependent. G. macrocarpum colonized sorghum roots best and enhanced plant growth and mineral uptake considerably more than the other VAMF species, especially at 30°C. G. fasciculatum enhanced shoot growth at 20 and 25°C, and mineral uptake only at 20°C. G. intraradices depressed shoot growth and mineral uptake at 30°C. G. macrocarpum enhanced shoot P, K, and Zn at all temperatures, and Fe at 25 and 30°C above that which could be accounted for by increased biomass. Sorghum plant growth responses to colonization by VAMF species may need to be evaluated at different temperatures to optimize beneficial effects.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: Glomus fasciculatum ; Glomus intraradices ; Glomus macrocarpum ; mineral nutrition ; soil temperature ; Sorghum bicolor ; uptake of P, K, S, Fe, and Zn ; VAMF ; vesicular-arbuscular mycorrhizal fungi
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Sorghum [Sorghum bicolor (L.) Moench] plants were grown in growth chambers at 20, 25 and 30°C in a low P Typic Argiudoll (3.65 µg P g-1 soil, pH 8.3) inoculated withGlomus fasciculatum, Glomus intraradices, andGlomus macrocarpum to determine effects of vesicular-arbuscular mycorrhizal fungi (VAMF) species on plant growth and mineral nutrient uptake. Sorghum root colonization by VAMF and plant responses toGlomus species were temperature dependent.G. macrocarpum colonized sorghum roots best and enhanced plant growth and mineral uptake considerably more than the other VAMF species, especially at 30°C.G. fasciculatum enhanced shoot growth at 20 and 25°C, and mineral uptake only at 20°C.G. intraradices depressed shoot growth and mineral uptake at 30°C.G. macrocarpum enhanced shoot P, K, and Zn at all temperatures, and Fe at 25 and 30°C above that which could be accounted for by increased biomass. Sorghum plant growth responses to colonization by VAMF species may need to be evaluated at different temperatures to optimize beneficial effects.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5036
    Keywords: chlorosis severity ; dry matter yields ; growth chamber ; leaf area ; root length ; shoot/root ratio ; Sorghum bicolor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Iron deficiency chlorosis (FeDC) is a common disorder for sorghum [Sorghum bicolor (L.) Moench] grown on alkaline calcareous soils. Four sorghum genotypes were grown in growth chambers on a low Fe (1.3 μg/g DTPA-extractable), alkaline (pH 8.0), calcareous (3.87% CaCO3 equivalent) Aridic Haplustoll to determine effects of different soil temperatures (12, 17, 22 and 27°C at a constant 27°C air temperature) on various root and shoot growth traits and development of FeDC. As soil temperature increased, leaf chlorosis became more severe, and shoot and root dry weights, root lengths, and leaf areas increased markedly. Shoot/root ratios, shoot weight/root length, leaf area/shoot weight and leaf area/root weight and root length also increased while root length/root weight decreased as soil temperature increased. Severe FeDC developed in all genotypes even though genotypes had previously shown different degrees of resistance to FeDC. Genotypes differed in most growth traits, especially dry matter yields, root lengths, and leaf areas, but most traits did not appear to be related to genotype resistance to FeDC. The most FeDC resistant genotype had the slowest growth rate and this may be a mechanism for its greater resistance to FeDC.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: aluminium toxicity ; evaporation retardation ; fly ash, gypsum ; soil acidity ; Sorghum bicolor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Removal of sulfur dioxide from flue gas produced by coal-burning power plants has increased the availability of by-products that may be useful as soil amendments for agriculture. We studied the effects of surface layers (caps) of fluidized bed combustion residue-fly ash mixture (FBCR-FA) or calcium sulfate on reduction of evaporative water losses and improvements in subsurface acid soil chemical characteristics. Caps 3.8 cm thick of porous FBCR-FA, hydrated commercial calcium sulfate (CCS), or soil (check) were placed on columns of coarse-loamy, mixed, mesic Umbric Dystrochrept soil of pH 4.2. After the addition of 40 cm of water during a 16-week period, mean daily water loss from the column with the FBCR-FA cap was 0.51 mm compared to 0.98 mm in the check. Mean increase in soil exchangeable Ca in the 5- to 40-cm depth for the CCS treatment was 0.83 cmolc kg−1 and mean pH (H2O) increase was 0.21 units. Mean KCl-extractable Al decreased from 6.08 to 5.52 cmolc kg−1. Roots of sudangrass (Sorghum bicolor (L.) Moench) planted in the columns after removal of the caps reached 2 cm depth in the control, 18 cm in the FBCR-FA and 38 cm in the CCS treated columns after 47 days of growth. The gypsum cap was effective in improving deep rooting in acid soils and the FBCR-FA cap reduced evaporative water losses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 155-156 (1993), S. 493-496 
    ISSN: 1573-5036
    Keywords: acid soil tolerance ; dry matter yield ; Mn toxicity ; root length ; Sorghum bicolor ; visual toxicity symptoms
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This study was conducted to define traits to screen sorghum (Sorghum bicolor L. Moench) genotypes for tolerance to excess Mn. Visual Mn toxicity symptoms, net and total root lengths, shoot and root dry matter yields, and shoot and root Mn concentrations were determined for plants grown in nutrient solutions (pH 4.5) at different levels of Mn (0, 3, 6, 9 and 12 mM above the initial 18 μM) to assess plant responses to excess Mn. Dry matter yields showed greatest variability among genotypes, and was an effective trait to evaluate sorghum for tolerance to excess Mn. Reductions in dry matter yields did not occur until Mn levels were above 3 mM. Levels of Mn between 3 and 6 mM could effectively be used to screen sorghum for genotypic differences to excess Mn. Manganese levels above 6 mM were too severe to allow good genotypic differentiation. Of genotypes tested, NB9040 and Wheatland showed good tolerance and SC283 and ICA-Nataima were sensitive to excess Mn.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...