ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Key words Herbivory ; Insects ; Old-fields ; Philaenus spumarius ; Solidago altissima
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We tested the hypothesis that phytophagous insects would have a strong top-down effect on early successional plant communities and would thus alter the course of succession. To test this hypothesis, we suppressed above-ground insects at regular intervals with a broad-spectrum insecticide through the first 3 years of old-field succession at three widely scattered locations in central New York State. Insect herbivory substantially reduced total plant biomass to a similar degree at all three sites by reducing the abundance of meadow goldenrod, Solidago altissima. As a result, Euthamia graminifolia dominated control plots whereas S. altissima dominated insecticide-treated plots by the third year of succession. S. altissima is the dominant old-field herbaceous species in this region but typically requires at least 5 years to become dominant. Past explanations for this delay have implicated colonization limitation whereas our data demonstrate that insect herbivory is a likely alternative explanation. A widespread, highly polyphagous insect, the xylem-tapping spittlebug, Philaenus spumarius, appeared to be the herbivore responsible for the reduction in standing crop biomass at all three sites. Insect herbivory typically caused little direct leaf tissue loss for the ten plant species we examined, including S. altissima. Consequently, the amount of leaf area removed was not a reliable indicator of the influence of insect herbivory on standing crop biomass or on early succession. Overall, we found a strong top-down effect of insect herbivores on biomass at several sites, so our results may be broadly applicable. These findings run counter to generalizations that top-down effects of herbivores, particularly insects, are weak in terrestrial systems. These generalizations may not apply to insects, such as spittlebugs, that can potentially mount an effective defense (i.e., spittle) against predators and subsequently reach relatively high abundance on common plant species. Our results suggest that insect herbivory may play an important but often overlooked role during early old-field succession.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Plant-insect interactions ; Herbivory ; Rhizomes ; Solidago altissima
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Although insect herbivores have many well documented effects on plant performance, there are few studies that assess the impact of above-ground herbivory on below-ground plant growth. For a seven year period in which no large-scale herbivore outbreaks occurred, a broad spectrum insecticide was utilized to suppress herbivorous insects in a natural community dominated by Solidago altissima. Ramet heights, rhizome lengths, rhizome biomass, and the number of daughter rhizomes all were lower in the control plots than in the insecticidetreated plots. These effects should lead to a decrease in the fitness of genets in the control plots relative to the fitness of genets in the insecticide-treated plots. We also found that ramets in the control plots appear to have compensated for herbivory: the ratio of rhizome length to rhizome biomass was greatest in the control plots, which indicates that clones moved farther per unit biomass in these plots than in the insecticide-treated plots. Clonal growth models show that this shift in allocation patterns greatly reduced the magnitude of treatment differences in long-term clonal displacements. Previous work has shown, and this study verified, that clonal growth in S. altissima is well represented by random-walk and diffusion models. Therefore, we used these models to examine possible treatment differences in rates of clonal expansion. Although rhizome lengths were greater in the insecticide-treated plots, results from the models suggest that our treatments had little impact on the short- and long-term displacement of S. altissima ramets from a point of origin. This occurred because S. altissima ramets backtrack often, and thus, treatment differences in net displacements are less pronounced than treatment differences in rhizome lengths.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...