ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: Carbon nanotubes (CNT) have very attractive electronic, mechanical. and thermal properties. Recently, measurements of thermal conductivity in single wall CNT mats showed estimated thermal conductivity magnitudes ranging from 17.5 to 58 W/cm-K at room temperature. which are better than bulk graphite. The cylinderical symmetry of CNT leads to large thermal conductivity along the tube axis, additionally, unlike graphite. CNTs can be made into ropes that can be used as heat conducting pipes for nanoscale applications. The thermal conductivity of several single wall carbon nanotubes has been calculated over temperature range from l00 K to 600 K using non-equilibrium molecular dynamics using Tersoff-Brenner potential for C-C interactions. Thermal conductivity of single wall CNTs shows a peaking behavior as a function of temperature. Dependence of the peak position on the chirality and radius of the tube will be discussed and explained in this presentation.
    Keywords: Solid-State Physics
    Type: Mar 20, 2000 - Mar 24, 2000; Minneapolis, MN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-11
    Description: Tris(bis(phenylmethyl)carbamodithioato-S,S ), commonly referred to as tris(N,Ndibenzyldithiocarbamato) indium(III), In(S2CNBz2)3, was synthesized and characterized by single crystal X-ray crystallography. The compound crystallizes in the triclinic space group P1 bar with two molecules per unit cell. The material was further characterized using a novel analytical system employing the combined powers of thermogravimetric analysis, gas chromatography/mass spectrometry and Fourier-Transform infrared spectroscopy to investigate its potential use as a precursor for the chemical vapor deposition (CVD) of thin film materials for photovoltaic applications. Upon heating, the material thermally decomposes to release CS2 and benzyl moieties in to the gas phase, resulting in bulk In2S3. Preliminary spray CVD experiments indicate that In(S2CNBz2)3 decomposed on a Cu substrate reacts to produce stoichiometric CuInS2 films.
    Keywords: Solid-State Physics
    Type: NASA/TM-2005-213430 , E-14964
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: The thermal conductivity of several single wall carbon nanotubes (CNT) has been calculated over a temperature range of 100-500 K using molecular dynamics simulations with Tersoff-Brenner potential for C-C interactions. In all cases, starting from similar values at 100K, thermal conductivities show a peaking behavior before falling off at higher temperatures. The peak position shifts to higher temperatures for nanotubes of larger diameter, and no significant dependence on the tube chirality is observed. It is shown that this phenomenon is due to onset of Umklapp scattering, which shifts to higher temperatures for nanotubes of larger diameter.
    Keywords: Solid-State Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-11
    Description: Progress towards achieving a high one-sun air mass 0 (AM0) efficiency in a monolithic dual junction solar cell comprised of a 1.62 eV InGaP top cell and a 1.1 eV InGaAs bottom cell grown on buffered GaAs is reported. The performance of stand-alone 1.62 eV InGaP and 1.1 eV InGaAs cells is compared to that of the dual junction cell. Projected AM0 efficiencies of 15.7% and 16.5% are expected for the 1.62 eV InGaP and 1.1 eV InGaAs cells grown on buffered GaAs. The dual junction cell has a projected one-sun AM0 conversion efficiency of 17%. The projected efficiencies are based upon the application of an optimized anti-reflective coating (ARC) to the as-grown cells. Quantum efficiency (QE) data obtained from the dual junction cell indicate that is is bottom cell current limited with the top cell generating 50% more current than the bottom cell. A comparison of the QE data for the stand-alone 1.1 eV InGaAs cell to that of the 1.1 eV InGaAs bottom cell in the tandem configuration indicates a degradation of the bottom cell conversion efficiency in the tandem configuration. The origin of this performance degradation is at present unknown. If the present limitation can be overcome, then a one-sun AM0 efficiency of 26% is achievable with the 1.62 eV/1.1 eV dual junction cell grown lattice-mismatched to GaAs.
    Keywords: Solid-State Physics
    Type: 16th Space Photovoltaic Research and Technology Conference; 122-128; NASA/CP-2001-210747/REV1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...