ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-12
    Description: Solar wind bombardment onto exposed surfaces in the solar system produces an energetic component to the exospheres about those bodies. The solar wind energy and composition are highly dependent on the origin of the plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into their various components, we have estimated the total sputter yield for each type of solar wind. We show that the heavy ion component, especially the He++ and 0+7 can greatly enhance the total sputter yield during times when the heavy ion population is enhanced. Folding in the flux, we compute the source rate for several species during different types of solar wind. Finally, we use a Monte Carlo model developed to simulate the time-dependent evolution of the lunar exosphere to study the sputtering component of the exosphere under the influence of a CME passage. We simulate the background exosphere of Na, K, Ca, and Mg. Simulations indicate that sputtering increases the mass of those constituents in the exosphere a few to a few tens times the background values. The escalation of atmospheric density occurs within an hour of onset The decrease in atmospheric density after the CME passage is also rapid, although takes longer than the increase, Sputtered neutral particles have a high probability of escaping the moon,by both Jeans escape and photo ionization. Density and spatial distribution of the exosphere can be tested with the LADEE mission.
    Keywords: Solar Physics
    Type: GSFC.JA.5538.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: On 29 April 1998, a coronal mass ejection (CME) was emitted from the Sun that had a significant impact on bodies located at 1 AU. The terrestrial magnetosphere did indeed become more electrically active during the storm passage but an obvious question is the effect of such a storm on an exposed rocky body like our Moon. The solar-storm/lunar atmosphere modeling effort (SSLAM) brings together surface interactions, exosphere, plasma, and surface charging models all run with a common driver - the solar storm and CME passage occurring from 1-4 May 1998. We present herein an expanded discussion on the solar driver during the 1-4 May 1998 period that included the passage of an intense coronal mass ejection (CME) that had〉 10 times the solar wind density and had a compositional component of He++ that exceeded 20%. We also provide a very brief overview oflhe SSLAM system layout and overarching results. One primary result is that the CME driver plasma can greatly increase the exospheric content via sputtering, with total mass loss rates that approach 1 kg/s during the 2-day CME passage. By analogy, we suggest that CME-related sputtering increases might also be expected during a CME passage by a near-earth asteroid or at the Mars exobase, resulting in an enhanced loss of material.
    Keywords: Solar Physics
    Type: GSFC.JA.01243.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: While regions at the floors of permanently shadowed polar craters are isolated from direct sunlight, these regions are still exposed to the harsh space environment, including the interplanetary Lyman-a background, meteoric impacts, and obstacle-affected solar wind. We demonstrate that each of these processes can act to erode the polar icy regolith located at or near the surface along the crater floor. The Lyman-a background can remove/erode the icy-regolith via photon stimulated desorption [1], meteoric impacts can vaporize the regolith [2], and redirected solar wind ions can sputter the ice-regolith mix [3]. As an example we shall examine in detail the inflow of solar wind ions and electrons into polar craters, One might expect such ions to flow horizontally over the crater top (see Figure). However, we find that plasma ambipolar processes act to deflect passing ions into the craters [3]. We examine this plasma process and determine the ion flux as a function of position across a notional crater floor. We demonstrate that inflowing solar wind ions can indeed create sputtering along the crater floor, effectively eroding the surface. Erosion time scales rrom sputtering will be presented. We shall also consider the effect of impact vaporization on buried icy-regolith regions. There will also be a discussion of solar wind electrons that enter into the PSR, demonstrating that these also have the ability rree surface-bound atoms via electron stimulated desorption processes [l].
    Keywords: Solar Physics
    Type: GSFC.ABS.4587.2011 , Wet vs Dry Moon meeting; Jun 12, 2011 - Jun 14, 2011; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...