ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: We characterize the dynamic properties of He ions of the solar wind. Because of the non-negligible abundance and the significant fraction of momentum flux inherent in helium ions, this species has an influence on the state of turbulence. Especially, we analyze the helium dynamic properties of different solar wind types. After a discussion of the influence of measurement errors on the statistical analysis of He bulk velocities, we investigate the structure function dependency on the solar wind state. We find a self-similar sealing in the range of minutes to days with characteristic structure function slopes deviating from the canonical Kolmogorov values. For comparison with previous studies, we also analyze H structure functions of the same time periods and discuss differences of coinciding He and H structure functions in the framework of the concept of intermittency.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 73; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: We perform a parameter study of the temporal evolution of a test particle distribution function in MHD turbulence. The turbulent fields are calculated using a pseudo-spectral method and periodic boundary conditions on a regular grid of 180(exp 3) points, appropriate for incompressible, homogeneous and isotropic turbulence. Initially, the kinetic and the magnetic energy are equal on the average. Both, deterministic and random initial conditions are used, in the former case with zeros of the magnetic field located at grid points, in the latter case located by interpolation between grid points. The evolution of the minor ion distribution function is studied in detail as these turbulent fields evolve, developing strong current and vorticity sheets. Using the full collisionless equation of motion for the test particles, the efficiency of nonlinear interactions can be studied. The results are compared to theoretical predictions and are then discussed in connection with the observations of the dynamical properties of solar wind minor ions derived from in situ observations.
    Keywords: Solar Physics
    Type: ; 82
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: We have investigated small-scale variations of the solar wind ion flux measured with Faraday cups onboard the Prognoz-8 satellite. These measurements have a high time resolution of 1.24 seconds for intervals with a duration of several hours and as high as 0.02 seconds for some periods of about 1 hour duration. The main goal of this work is the determination of the quantitative features of fast ion flux fluctuations using mainly spectral analysis but also other methods. We also identify their association with interplanetary plasma parameters. Particularly, it is shown that the slope of the power spectra in the frequency range from 1E-4 to 6E-2 Hz is close to the classical Kolmogorov (-5/3) law. We also discuss some intervals with a very high level of the relative amplitude of flux fluctuations (10-20 percent) which were observed near the Earth's bow shock in the foreshock region. The use of the wavelet method for the long time series allows us to study the temporal evolution of power spectra.
    Keywords: Solar Physics
    Type: ; 82
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: The MASS instrument on WIND contains the first isochronous time-offlight spectrometer to be flown in the solar wind. The first spectra obtained with this instrument has demonstrated its capability to measure the abundances of several high-and low-FIP elements in the solar wind. The derivation of these abundances requires a careful calibration of the charge exchange efficiencies of the relevant ions in carbon foils. These efficiencies and the corresponding instrument functions have been determined in extensive calibration campaigns at different institutions. We present first and preliminary results obtained in slow solar wind streams and we compare these results with those obtained from previous investigations of solar wind abundances and of coronal abundances as derived from Solar Energetic Particles. Recent models of the FIP related fractionation effect predict a depletion of a factor of typically 4 to 5 for high-FIP elements (He, N, O, Ne, Ar, etc.) relative to low-FIP elements (Mg, Fe, Si, etc.). We also compare our results with the detailed predictions of the different models and we discuss the resulting evidence to validate or to invalidate different physical scenarios explaining the feeding and the acceleration of slow stream solar wind.
    Keywords: Solar Physics
    Type: ; 35
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...