ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Anomalous cosmic rays (ACRs) are interstellar neutrals that drift into the heliosphere, become singly ionized, and are convected to the termination shock of the solar wind, where they are thought to be accelerated to hundreds of MeV. Because their effective origin is at the termination shock, studies of their gradients and spectral shape can reveal important clues about the shock's location, its strength, and the source flux of ACRs. Recently, such studies have predicted that one or more of the Voyager and Pioneer spacecraft may cross the termination shock in the next few years. In addition, there have been studies of galactic cosmic rays that shed new light on the location of the modulation boundary of these particles, which may be the heliopause region. In this talk, we will review these observations and the information they provide about the boundaries of the heliosphere.
    Keywords: Solar Physics
    Type: ; 51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-08
    Description: We have examined the FIP fractionation effects on the average composition of the small SEP events, and discuss the ensuing implications for the origin and acceleration of nuclei in these events.
    Keywords: Solar Physics
    Type: 27th Internationaal Cosmic Ray Conference Proceedings|27th Internationaal Cosmic Ray Conference; Hamburg; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-08
    Keywords: Solar Physics
    Type: Solar Wind 10 Conference; Pisa; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: We report on observations of the abundances of elements from Helium to Nickel in over 50 different solar energetic particle events using the Solar Isotope Spectrometer (SIS) on-board the Advanced Composition Explorer (ACE) spacecraft. It had originally been expected that the energy spectra of different elements would show spectral roll-overs at energies related to the Q/M ratio of each element. Due to the partial stripping of Fe and essentially complete stripping of O, it was expected that the Fe/O ratio would be observed to decrease with increasing energy. While many events show this pattern, others have Fe/O which is constant with energy, while for yet others Fe/O actually increases with energy. Events having constant Fe/O could simply have their spectral breaks outside of the observed energy range. However, events which show increasing Fe/O cannot be explained within the framework of spectral breaks. Possible explanations include injection of remnant heavy ions from earlier impulsive events, hybrid Events consisting of a combination of flare-accelerated and shock-accelerated particles from a single solar event, and some new physical process in shock acceleration. We will report on efforts to distinguish these possible explanations.
    Keywords: Solar Physics
    Type: COSPAR 2004; Jul 18, 2004 - Jul 25, 2004; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The availability of GODAE Oceanview-type ocean forecast systems provides the opportunity to develop high-resolution, short- to medium-range coupled prediction systems. Several groups have undertaken the first experiments based on relatively unsophisticated approaches. Progress is being driven at the institutional level targeting a range of applications that represent their respective national interests with clear overlaps and opportunities for information exchange and collaboration. These include general circulation, hurricanes, extra-tropical storms, high-latitude weather and sea-ice forecasting as well as coastal air-sea interaction. In some cases, research has moved beyond case and sensitivity studies to controlled experiments to obtain statistically significant metrics.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN17741 , Journal of Operational Oceanography (ISSN 1755-8778); 8; Supplemet 2; s239-s258
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Deep Convective Clouds and Chemistry (DC3) field campaign in 2012 provided a plethora of aircraft and ground-based observations (e.g., trace gases, lightning and radar) to study deep convective storms, their convective transport of trace gases, and associated lightning occurrence and production of nitrogen oxides (NOx). Based on the measurements taken of the 29-30 May 2012 Oklahoma thunderstorm, an analysis against a Weather Research and Forecasting Chemistry (WRF-Chem) model simulation of the same event at 3-km horizontal resolution was performed. One of the main objectives was to include various flash rate parameterization schemes (FRPSs) in the model and identify which scheme(s) best captured the flash rates observed by the National Lightning Detection Network (NLDN) and Oklahoma Lightning Mapping Array (LMA). The comparison indicates how well the schemes predicted the timing, location, and number of lightning flashes. The FRPSs implemented in the model were based on the simulated thunderstorms physical features, such as maximum vertical velocity, cloud top height, and updraft volume. Adjustment factors were added to each FRPS to best capture the observed flash trend and a sensitivity study was performed to compare the range in model-simulated lightning-generated nitrogen oxides (LNOx) generated by each FRPS over the storms lifetime. Based on the best FRPS, model-simulated LNOx was compared against aircraft measured NOx. The trace gas analysis, along with the increased detail in the model specification of the vertical distribution of lightning flashes as suggested by the LMA data, provide guidance in determining the scenario of NO production per intracloud and cloud-to-ground flash that best matches the NOx mixing ratios observed by the aircraft.
    Keywords: Meteorology and Climatology
    Type: KSC-E-DAA-TN15157 , American Meteorological Society (AMS) Annual Meeting; Feb 02, 2014 - Feb 06, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: One of the major goals of NASA's Solar Probe Plus (SPP) mission is to determine the mechanisms that accelerate and transport high-energy particles from the solar atmosphere out into the heliosphere. Processes such as coronal mass ejections and solar flares, which peak roughly every 11 years around solar maximum, release huge quantities of energized matter, magnetic fields and electromagnetic radiation into space. The high-energy particles, known as solar energetic particles or SEPs, present a serious radiation threat to human explorers living and working outside low-Earth orbit and to technological assets such as communications and scientific satellites in space. This talk describes the Integrated Science Investigation of the Sun (ISIS) - Energetic Particle Instrument suite. ISIS measures key properties such as intensities, energy spectra, composition, and angular distributions of the low-energy suprathermal source populations, as well as the more hazardous, higher energy particles ejected from the Sun. By making the first-ever direct measurements of the near-Sun regions where the acceleration takes place, ISIS will provide the critical measurements that, when integrated with other SPP instruments and with solar and interplanetary observations, will lead to a revolutionary new understanding of the Sun and major drivers of solar system space weather.
    Keywords: Solar Physics
    Type: GSFC.CPR.4541.2011 , 32nd International Cosmic Ray Conference (ICRC2011); Aug 11, 2011 - Aug 18, 2011; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: Deep convective transport of gaseous precursors to ozone (O3) and aerosols to the upper troposphere is affected by liquid- and mixed-phase scavenging, entrainment of free tropospheric air, and aqueous chemistry. The contributions of these processes are examined using aircraft measurements obtained in storm inflow and outflow during the 2012 Deep Convective Clouds and Chemistry (DC3) experiment combined with high resolution (dx 〈= 3 km) WRF-Chem simulations of a severe storm, an airmass storm, and a mesoscale convective system (MCS). The simulation results for the MCS suggest that formaldehyde (CH2O) is not retained in ice when cloud water freezes, in agreement with previous studies of the severe storm. By analyzing WRF-Chem trajectories, the effects of scavenging, entrainment, and aqueous chemistry on outflow mixing ratios of CH2O, methyl hydroperoxide (CH3OOH), and hydrogen peroxide (H2O2) are quantified. Liquid-phase microphysical scavenging was the dominant process reducing CH2O and H2O2 outflow mixing ratios in all three storms. Aqueous chemistry did not significantly affect outflow mixing ratios of all three species. In the severe storm and MCS, the higher than expected reductions in CH3OOH mixing ratios in the storm cores were primarily due to entrainment of low background CH3OOH. In the airmass storm, lower CH3OOH and H2O2 scavenging efficiencies (SEs) than in the MCS were partly due to entrainment of higher background CH3OOH and H2O2. Overestimated rain and hail production in WRF-Chem reduces the confidence in ice retention fraction values determined for the peroxides and CH2O.
    Keywords: Meteorology and Climatology
    Type: KSC-E-DAA-TN57972 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 123; 14; 7594-7614
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: We report on observations of a solar energetic particle event by instruments on five different spacecraft: the Advanced Composition Explorer (ACE), STEREO A and B, WIND, and GOES II. The event began with a class X1.5 .soft x-ray flare in AR930 on December 14 at 22:15 UT. At this time the two STEREO spacecraft were located outside the Earth's magnetosphere and were heading for their first lunar swing-by on December 15. The x-ray event was located on the sun at W46, a longitude which is nominally well-connected magnetically to the Earth. An interplanetary shock, associated with an earlier X3.4 event on December 13 (also from AR930), passed the Earth on December 14 at approx.13:56 (time at ACE). The corresponding magnetic cloud arrived at approx.22 UT on December 14, close to the time of the onset of the particle event associated with the X1.5 flare, and extended until approx.08 UT on December 15. The intensity of approx.14 MeV protons at STEREO A shows three dips by factors of approx.10 or more during the early stages of this event while the spacecraft was within the magnetic cloud. Similar dips are seen for protons to at least 100 MeV. In principle, these dips could have been caused by changes in the magnetic field direction with respect to the particle telescope's field of view while viewing a beamed particle distribution. However, this possibility can be ruled out because the magnetic field at the spacecraft shows no evidence of such directional variations, and similar particle intensity dips were seen by instruments on other spacecraft in the near-Earth solar wind. We shall present evidence that the dips were actually associated with varying magnetic connection to the Sun within the magnetic cloud. These dips were not observed at GOES II, suggesting they were somehow smoothed out by passage into the magnetosphere.
    Keywords: Solar Physics
    Type: Second Heliospheric Workshop; May 05, 2008 - May 09, 2008; Kephalonia; Greece
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The solar particle event observed at STEREO Ahead on 18 August 2010 displayeda rich variety of behavior in the particle anisotropies. Sectored rates measured by theLow Energy Telescope (LET) on STEREO showed very large bidirectional anisotropies in4 6 MeV protons for the first 17 hours of the event while inside a magnetic cloud, withintensities along the field direction several hundred to nearly 1000 times greater than thoseperpendicular to the field. At the trailing end of the cloud, the protons became isotropic andtheir spectrum hardened slightly, while the HeH abundance ratio plunged by a factor of approximatelyfour for about four hours. Associated with the arrival of a shock on 20 Augustwas a series of brief (10 minute duration) intensity increases (commonly called shockspikes) with relatively narrow angular distributions (45 FWHM), followed by an abruptdecrease in particle intensities at the shock itself and a reversal of the proton flow to a directiontoward the Sun and away from the receding shock. We discuss the STEREOLETobservations of this interesting event in the context of other observations reported in theliterature
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN8469 , Solar Physics; 281; 1; 301-318
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...