ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-10
    Description: Solar magnetograph to measure magnetic field intensities in solar prominences, utilizing H- alpha emission line
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Progress in the development of an instrument with very high (1:10 billion) wavelength stability designed to measure solar surface velocities and magnetic fields is reported. The instrument determines Doppler and Zeeman shifts in solar spectral lines by a 6-point weighted average. It is built around an electrically tunable solid lithium-niobate Fabry-Perot etalon that is stabilized against a diode laser which itself is locked to a resonance line of cesium 133. Key features are the etalon, which acts as a wide-angle 0.017-nm solar filter, the camera with a specially stabilized shutter, and the instrument control and data collection system. Use of the instrument in helioseismological research is emphasized.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: ESA, Seismology of the Sun and Sun-Like Stars; p 227-233
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The design criteria for a compact magnetograph that can monitor solar magnetic fields from a free-flying satellite for 5 to 10 years are reviewed. The signal-to-noise ratio that can be obtained with a 10-cm f/10 refractor operated with a Fabry-Perot filter and a solid-state detector array is derived. The telescope measures the longitudinal component of the magnetic field for the entire solar disk in a few minutes at a 20-G threshold and at 3-arcsec resolution. The Fabry-Perot filter has a lithium niobate etalon, which can be tuned electrically and operated at a fixed tilt angle in such a manner that it cancels the solar rotational Doppler shifts in the transmitted spectrum. Principles of operation of various types of polarization modulators are presented, and it is concluded that photoelastic modulators and liquid-crystal devices hold the most promise for use in a satellite-borne magnetograph,
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA. Marshall Space Flight Center Meas. of Solar Vector Magnetic Fields; p 141-152
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: A solid etalon has been designed and fabricated from a 50-mm diameter wafer of optical-quality lithium niobate. The finished etalon has a free spectral range of 0.325 nm at 588 nm. The parallel faces are coated with silver, and the central 15-mm aperture of the etalon has a finesse of 18.6. The reflective faces double as electrodes, and application of voltage will shift the passband. This feature was used in a servo circuit to stabilize the passband against temperature and tilt-induced drifts to better than three parts in one billion. Operated in the stabilized mode for day-long sessions, this filter alternately samples the wings of a narrow atomic absorption line in the solar spectrum and produces a signal proportional to velocity on the solar disk. The Fourier transform of this signal yields information on acoustic waves in the solar interior.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Computerized solid state charged particle used in dE/dx telescope configuration
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NUCLEAR SCIENCE SYMPOSIUM; Oct 31, 1967 - Nov 02, 1967; LOS ANGELES, CA|; INESE JOURNAL OF PHY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: An intrinsic-scale flux-rope model for interplanetary magnetic clouds, incorporating conservation of magnetic helicity, flux and mass is found to adequately explain clouds' average thermodynamic and magnetic properties. In spite their continuous expansion as they balloon into interplanetary space, magnetic clouds maintain high temperatures. This is shown to be due to magnetic energy dissipation. The temperature of an expanding cloud is shown to pass through a maximum above its starting temperature if the initial plasma beta in the cloud is less than 2/3. Excess magnetic pressure inside the cloud is not an important driver of the expansion as it is almost balanced by the tension in the helical field lines. It is conservation of magnetic helicity and flux that requires that clouds expand radially as they move away from the Sun. Comparison with published data shows good agreement between measured cloud properties and theory. Parameters determined from theoretical fits to the data, when extended back to the Sun, are consistent with the origin of interplanetary magnetic clouds in solar filament eruptions. A possible extension of the heating mechanism discussed here to heating of the solar corona is discussed.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 46; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: Analysis of heliospheric magnetic fields at 1 AU shows that 10(exp 24) Mx of net azimuthal flux escapes from the Sun per solar cycle. This rate is consistent with rates derived from other indicators of flux escape, including coronal mass ejections and filament eruptions. The toroidal flux escape rate is compared with the apparent rate of flux emergence at the solar surface, and it is concluded that escaping toroids will remove at least 20% of the emerging flux, and may remove as much as 100% of emerging flux if multiple eruptions occur on the toroids. The data imply that flux escapes the Sun with an efficiency far exceeding Parker's upper limit estimate of 3%. Toroidal flux escape is almost certainly the source of the observed overwinding of the interplanetary magnetic field spiral. Two mechanisms to facilitate net flux escape are discussed: helicity charging to push open the fields and flux transport with reconnection to close them off. We estimate the Sun will shed approximately 2 x 10(exp 45) of magnetic helicity per solar cycle, leading to a mean helicity density of 100 Mx(exp 2)cm(exp -3) at 1 AU, which agrees well with observations.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 46; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: The present device for lightning channel propagation-velocity determination employs eight photodetectors mounted behind precision horizontal slits in the focal plane of a photographic camera lens. The eight photodetector pulses, IRIG-B time, and slow and fast electric field-change waveforms are recorded on a 14-track analog tape recorder. A comparison of the present results with those obtained by a streaking camera shows no significant differences between the velocities obtained from the same strokes with the two systems; neither is there any difference in pulse characteristics or in the velocities calculated from them.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Journal of Atmospheric and Oceanic Technology (ISSN 0739-0572); 6; 439-445
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Solar-B, the next ISAS mission (with major NASA participation), is designed to address the fundamental question of how magnetic fields interact with plasma to produce solar variability. The mission has a number of unique capabilities that will enable it to answer the outstanding questions of solar magnetism. First, by escaping atmospheric seeing, it will deliver continuous observations of the solar surface with unprecedented spatial resolution. Second, Solar-B will deliver the first accurate measurements of all three components of the photospheric magnetic field. Solar-B will measure both the magnetic energy driving the photosphere and simultaneously its effects in the corona. Solar-B offers unique programmatic opportunities to NASA. It will continue an effective collaboration with our most reliable international partner. It will deliver images and data that will have strong public outreach potential. Finally, the science of Solar-B is clearly related to the themes of origins and plasma astrophysics, and contributes directly to the national space weather and global change programs.
    Keywords: Solar Physics
    Type: NASA-CR-204628 , NAS 1.26:204628
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Using the Flare Genesis Experiment (FGE), a balloon-borne observatory with an 80-cm solar telescope we observed the active region NOAA 8844 on January 25, 2000 for several hours. FGE was equipped with a vector polarimeter and a tunable Fabry-Perot narrow-band filter. It recorded time series of filtergrams, vector magnetograms, and Dopplergrams at the Ca(I) 6122.2 angstrom line, and H-alpha filtergrams with a cadence between 2.5 and 7.5 minutes. At the time of the observations, NOAA 8844 was located at approximately 5 N 30 W. The region was rapidly growing during the observations; new magnetic flux was constantly emerging in three supergranules near its center. We describe in detail how the FGE data were analyzed and report on the structure and behavior of peculiar moving dipolar features (MDFs) observed in the active region. In longitudinal magnetograms, the MDFs appeared to be small dipoles in the emerging fields. The east-west orientation of their polarities was opposite that of the sunspots. The dipoles were oriented parallel to their direction of motion, which was in most cases towards the sunspots. Previously, dipolar moving magnetic features have only been observed flowing out from sunspots. Vector magnetograms show that the magnetic field of each MDF negative part was less inclined to the local horizontal than the ones of the positive part. We identify the MDFs as undulations, or stitches, where the emerging flux ropes are still tied to the photosphere. We present a U-loop model that can account for their unusual structure and behavior, and it shows how emerging flux can shed its entrained mass.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...