ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Solar Physics  (33)
  • LUNAR AND PLANETARY EXPLORATION
  • 1995-1999  (35)
  • 1
    Publication Date: 2011-08-23
    Description: In this paper multiwavelength observations of an impulsive flare of May 9, 1991 are presented. This event was observed with the 48 GHz multibeam focal array used at the Itapetinga radio telescope, the microwave patrol telescopes at Bem and the BATSE high time resolution hard X-ray spectrometer on board CGRO. While spatially unresolved low sensitivity observations show two major impulsive peaks, the mm-wave observations with the ability of spatially high resolved tracking of the emission centroids suggest a primarily bipolar source configuration. For the first time two mm-wave sources with a spacing below the HPBW could be separated with the multibeam technique. The general features of the observations are explained as emission of partially trapped electrons. Furthermore we present evidence for highly inhomogeneous substructures within one of the two mm-wave sources for which the positional scatter of the emission center, within 2s, is less than 2".
    Keywords: Solar Physics
    Type: Astronomy and Astrophysics; Volume 317; 232-243
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: High resolution numerical simulations of thermal convection in a rapidly rotating channel with gravity perpendicular to the rotation vector are described. The convecting columns are subject to a beta-effect resulting from cross-channel topographic vortex stretching. The symmetries of the problem allow many invariant wavenumber sets, and this property is associated with the existence of stable multiple-equilibria at modest supercriticality. The transition to chaotic behavior involves the production of intermittent unstable orbits off a two-torus in energy space. At very high Rayleigh number (of order 10(exp 6) to 10(exp 7)) the motion can be turbulent, depending on the size of beta. However, the turbulence is usually characterized by an almost-periodic formation of patches of small scale convection that cause regular pulsations in the accompanying strong zonal jets. The processes maintaining these flows may be related to those responsible for the zonal currents on Jupiter and for cyclic variability on the Sun.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA-CR-198646 , NAS 1.26:198646
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: Emissivity spectra of particulate mineral samples are highly dependent on particle size when that size is comparable to the wavelength of light emitted (5-50 micrometers for the midinfrared). Proper geologic interpretation of data from planetary infrared spectrometers will require that these particle size effects be well understood. To address this issue, samples of quartz powders were produced with narrow, well-characterized particle size distributions. Mean particle diameters in these samples ranged from 15 to 227 micrometers. Emission spectra of these powders allow the first detailed comparison of the complex spectral variations with particle size observed in laboratory data with the predictions of radiative transfer models. Four such models are considered here. Hapke's relectance theory (converted to emissivity via Kirchoff's law) is the first model tested. Hapke's more recently published emission theory is also employed. The third model, the 'Mie/Conel' model, uses Mie single scattering with a two-stream approximation for multiple scattering. This model, like the first, is a converted reflec- tance model. Mie scattering assumes particles are both spherical and well separated, which is not true for the quartz powders, but includes diffraction effects. The fourth model uses the Mie solution for single scattering by spheres and inputs those results into the multiple scattering formalism of Hapke's emission theory. The results of the four models are considered in relation to the values of the optical constants n and k. We have grouped these as class 1 (k large), class 2 (k moderate, n is approximately 2), class 3 (k small, n is approximately 2), and class 4 (k small, n is approximately 1). In general, the Mie/Hapke hybrid model does best at predicting variations with grain size. In particular, it predicts changes of the correct pattern, although incorrect magnitude, for class 1 bands, where large increases in emissivity with decreasing grain size are observed. This model also does an excellent job on moderate (class 2) and very weak and intraband (class 3) regions, and correctly predicts the emission maximum and its invariance with grain size near the Christiansen frequency (class 4). The Mie/Hapke hybrid model also has the fewest free parameters of the four models examined, while maintaining the most physical treatment of the radiative transfer. The Mie/Conel model performs as well as the Mie/Hapke hybrid model in strong bands (class 1) but does not accurately model the behavior of moderate (class 2) and very weak (class 3) bands.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; E4; p. 7465-7477
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: Examples of destabilization of prominences and their associated coronal mass ejections (CMEs) are presented. During the 1996 campaigns of multi-wavelength observations with the Solar and Heliospheric Observatory (SOHO), the Yohkoh satellite's soft X-ray telescope (SXT) and the Meudon (France) H alpha spectroheliograph eruptive solar filaments and prominences associated with the CMEs were observed. Two of the observed events showed that CMEs and 'brusques disparitions' (BDs) seem to be consequences of global magnetic field instability.
    Keywords: Solar Physics
    Type: ; 663-668
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: In this paper we analyze the effects of Faraday rotation on the azimuth of the transverse magnetic field from observations taken with the Marshall Space Flight Center's vector magnetograph for a simple sunspot observed on June 9, 1985. Vector magnetograms were obtained over the wavelength interval of 170 mA redward of line center of the Fe I 5250.22 A spectral line to 170 mA to the blue, in steps of 10 mA. These data were analyzed to produce the variation of the azimuth as a function of wavelength at each pixel over the field of vi ew of the sunspot. At selected locations in the sunspot, curves of the observed variation of azimuth with wavelength were compared with model calculations for the amount of Faraday rotation of the azimuth. From these comparisons we derived the amount of rotation as functions of bo th the magnitude and inclination of the sunspot's field and deduced the ranges of these field values for which Faraday rotation presents a significant problem in observations taken near the center of a spectral line.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: A large number of magnetic holes have been found in the Ulysses data during its cruise in the ecliptic. They are interpreted as convecting structures, probably caused by the mirror instability which exists in high beta plasmas with anisotropic temperatures. The characteristics of the holes reflect the solar wind condition of the region in which the holes are formed, and the point of observation may be far removed from where the instability occurs. A preliminary survey appears to indicate that the number of holes has no significant radial dependence. However, the number of holes does appear to increase with increasing heliographic latitude. Yet the large scale solar wind structures with their compression regions disappeared at approximately 57 deg south latitude. Thus any causal relationship between the holes and large scale solar wind structures is questionable. The temperature anisotropy and high beta required by the mirror instability must be generated by other mechanisms. In order to tie the magnetic holes and the mirror instability to their cause, the evolution of their characteristics with heliocentric distance and latitude needs to be investigated. With the progression of Ulysses around the sun a survey will be conducted to ascertain the characteristics of the magnetic holes as a function of heliographic latitude and heliocentric distance. A comparison of the results with the solar wind conditions may lead to the identification of the magnetic hole generating mechanism(s).
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 76; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: Helioseismology began in earnest in the mid 1970's. In the two decades which have elapsed since that time this branch of solar physics has become a mature field of research. Helioseismology has demonstrated that the solar convection zone is about twice as deep as was generally thought to be the case before 1977. Helioseismology has also provided measurements of the solar internal angular velocity over much of the sun's interior. Helioseismology has also ruled out models which would solve the solar neutrino problem by a lowering of the temperature of the core. Recently, some of the seismic properties of the sun have been demonstrated to vary with changing levels of solar activity. Also, helioseismology has recently provided evidence for helical flow patterns in the shallow, sub-photosphere layers. The techniques of helioseismology are also expanding to include seismic probes of solar active regions. Some work is also being conducted into the possible contributions of the solar acoustic models to the heating of the solar atmosphere. In this talk I will highlight a few of the above results and concentrate on current areas of research in the field.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 27; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: One of the striking results of the Sun's south polar pass by Ulysses was the discovery of large amplitude, long period Alfvenic fluctuations that were continuously present in the solar wind flow from the polar coronal hole. The fluctuations dominate the variances and power spectra at periods greater than or equal to 1 hour and are evident as correlated fluctuations in the magnetic field and solar wind velocity components. Various properties of the fluctuations in the magnetic field, in the velocity, and in the electric field have been established. The waves appear to have important implications for galactic cosmic rays and for the solar wind, topics which have continued to be investigated. Their origin is also under study, specifically whether or not they represent motions of the ends of the field lines at the Sun. The resolution of these issues has benefited from the more recent observations as the spacecraft traveled northward toward the ecliptic and passed into the northern solar hemisphere. All these observations will be presented and their implications will be discussed.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 76; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: The problems that can be solved by combining the Solar and Heliospheric Observatory (SOHO) and the magnetic structures on and around the sun (MagSonas) observations are discussed. A magneto-Doppler imager and X and Ka band linearly polarized radio signals sent to the other side of the sun can support extended SOHO mission. This is the purpose of the MagSonas mission. The MagSonas radio system, designed to serve as spacecraft communications and a sounding coronal magnetic field, is described.
    Keywords: Solar Physics
    Type: ; 653-656
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-08
    Description: A study is presented of 153 fast shock waves and their relation to other large-scale features in the solar wind: corotating interaction regions (CIRs), interplanetary counterparts of coronal mass ejections (ICMEs) and the magnetic sector structure, observed by Ulysses from October 1990 to the south solar pass in the summer of 1994.
    Keywords: Solar Physics
    Type: Journal of Geophysical Research
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...