ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The NASA MESSENGER mission explored the innermost planet of the solar system and obtained a rich dataset of range measurements for the determination of Mercury's ephemeris. Here we use these precise data collected over seven years to estimate parameters related to General Relativity and the evolution of the Sun. These results confirm the validity of the Strong Equivalence Principle with a significantly refined uncertainty of the Nordtvedt parameter eta=(-6.6 plus or minus 7.2)x10(exp -5) By assuming a metric theory of gravitation, we retrieved the Post-Newtonian parameter beta = 1 + (-1.6 plus or minus 1.8)x10(exp -5) and the Sun's gravitational oblateness, J(sub 2 solar)=(2.246 plus or minus 0.022)x10(exp -7). Finally, we obtain an estimate of the time variation of the Sun gravitational parameter, G (raised dot)solar mass/G solar mass =(-6.13 plus or minus 1.47)x10(exp -14), which is consistent with the expected solar mass loss due to the solar wind and interior processes. This measurement allows us to constrain |G(raised dot)|/G to be less than 4 x 10(exp -14) yr(exp -1).
    Keywords: Solar Physics; Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN50758 , GSFC-E-DAA-TN51570 , Nature Communications (e-ISSN 2041-1723); 9; 289
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The scale of the solar system is slowly changing, likely increasing as a result of solar mass loss, with additional change possible if there is a secular variation of the gravitational constant, G. The measurement of the change of scale could provide insight into the past and the future of the solar system, and in addition a better understanding of planetary motion and fundamental physics. Estimates for the expansion of the scale of the solar system are of order 1.5 cm year(exp -1) AU(exp -1), which over several years is an observable quantity with present-day laser ranging systems. This estimate suggests that laser measurements between planets could provide an accurate estimate of the solar system expansion rate. We examine distance measurements between three bodies in the inner solar system -- Earth's Moon, Mars and Venus -- and outline a mission concept for making the measurements. The concept involves placing spacecraft that carry laser ranging transponders in orbit around each body and measuring the distances between the three spacecraft over a period of several years. The analysis of these range measurements would allow the co-estimation of the spacecraft orbit, planetary ephemerides, other geophysical parameters related to the constitution and dynamics of the central bodies, and key geodetic parameters related to the solar system expansion, the Sun, and theoretical physics.
    Keywords: Solar Physics; Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN52817 , Planetary and Space Science (ISSN 0032-0633); 153; 127-133
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...