ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 83 (1994), S. 502-513 
    ISSN: 1437-3262
    Keywords: Eastern Desert ; Egypt ; Granitoid gneisses ; Single zircon dating
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Strongly deformed and locally migmatized gneisses occur at several places in the southern Eastern Desert of Egypt and in Sinai and have variously been interpreted as a basement to Pan-african (≈900 to 600 Ma) supracrustal and intrusive assemblages. A suite of grabbroic to granitic gneisses was investigated in the Hafafit area, which constitutes an I-type calc-alkaline intrusive assemblage whose chemistry suggests emplacement along an active continental margin and whose granitoid members can be correlated with the so-called ‘Older Granites’ of Egypt.207Pb/206Pb single zircon evaporation from three samples of the Hafafit gneisses yielded protolith emplacement ages between 677 ± 9 and 700 ± 12 Ma and document granitoid activity over a period of about 23 Ma. A migmatitic granitic gneiss from Wadi Bitan, south-west of Ras Banas, has a zircon age of 704 ± 8 Ma, and its protolith was apparently generated during the same intrusive event as the granitoids at Hafafit. Single zircons from a dioritic gneiss from Wadi Feiran in south-west Sinai suggest emplacement of the protolith at 796 ± 6 Ma and this is comparable with ages for granitoids in north-east Sinai and southern Israel. None of the above gneisses is derived from remelting of older continental crust, but they are interpreted as reflecting subduction-related calc-alkaline magmatism during early Pan-african magmatic arc formation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1437-3262
    Keywords: Orthogneisses ; I-type granites ; S-type granites ; Rb-Sr whole rock dating ; Single zircon dating ; Spessart Crystalline Complex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Spessart Crystalline Complex, north-west Bavaria contains two orthogneiss units of granitic to granodioritic composition, known as the Rotgneiss and Haibach gneiss, respectively, which are structurally conformable with associated metasediments. The igneous origin of the Rotgneiss is apparent from field and textural evidence, whereas strong deformation and recrystallization in the Haibach gneiss has obscured most primary textures. New geochemical data as well as zircon morphology prove the Haibach gneiss to be derived from a granitoid precursor, which was chemically similar to the Rotgneiss protolith, thus suggesting a genetic link between those two rock units. Both gneiss types have chemical compositions typical of anatectic two-mica leucogranites. They show characteristics of both I- and S-type granites. Rb-Sr whole rock data on the Haibach gneiss provide an isochron age of 407±14 Ma (IR = 0.7077±0.0007; MSWD 2.2), which is slightly younger than the published date for the Rotgneiss (439±15 Ma; IR=0.7048±0.0026; MSWD 4.9). Single zircon dating of six idiomorphic grains, using the evaporation method, yielded a mean 207Pb/206Pb age of 410±18 Ma for the Haibach gneiss and 418±18 Ma for the Rotgneiss. Both zircon ages are within analytical error of the Rb-Sr isochron dates and are interpreted to reflect the time of protolith emplacement in Silurian times. Three xenocrystic zircon grains from the Rotgneiss yielded 207Pb/206Pb ages of 2278±12, 2490±13 and 2734±10 Ma, respectively, suggesting that late Archaean to early Proterozoic crust was involved in the generation of the granite from which the Rotgneiss is derived. Although it is assumed that the granitic protoliths of the two gneisses were formed through anatexis of older continental crust, the relatively low 87Sr/86Sr initial ratios of both gneisses may also indicate the admixture of a mantle component. The Rotgneiss and the Haibach gneiss thus document granitic magmatism at an active continental margin during late Silurian times.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 83 (1994), S. 502-513 
    ISSN: 1437-3262
    Keywords: Eastern Desert ; Egypt ; Granitoid gneisses ; Single zircon dating
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Strongly deformed and locally migmatized gneisses occur at several places in the southern Eastern Desert of Egypt and in Sinai and have variously been interpreted as a basement to Pan-african (≈900 to 600 Ma) supracrustal and intrusive assemblages. A suite of grabbroic to granitic gneisses was investigated in the Hafafit area, which constitutes an I-type calc-alkaline intrusive assemblage whose chemistry suggests emplacement along an active continental margin and whose granitoid members can be correlated with the so-called ‘Older Granites’ of Egypt. 207Pb/206Pb single zircon evaporation from three samples of the Hafafit gneisses yielded protolith emplacement ages between 677 ± 9 and 700 ± 12 Ma and document granitoid activity over a period of about 23 Ma. A migmatitic granitic gneiss from Wadi Bitan, south-west of Ras Banas, has a zircon age of 704 ± 8 Ma, and its protolith was apparently generated during the same intrusive event as the granitoids at Hafafit. Single zircons from a dioritic gneiss from Wadi Feiran in south-west Sinai suggest emplacement of the protolith at 796 ± 6 Ma and this is comparable with ages for granitoids in north-east Sinai and southern Israel. None of the above gneisses is derived from remelting of older continental crust, but they are interpreted as reflecting subduction-related calc-alkaline magmatism during early Pan-african magmatic arc formation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...