ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 26 (1999), S. 264-272 
    ISSN: 1432-2021
    Keywords: Key words Coesite ; Electron density ; Critical point properties ; Laplacian ; SiO bond
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract  Bond critical point properties of electron density distributions calculated for representative Si5O16 moieties of the structure of coesite are compared with those observed and calculated for the bulk crystal. The values calculated for the moieties agree with those observed to within ∼5%, on average, whereas those calculated for the crystal agree to within ∼10%. As the SiOSi angles increase and the SiO bonds shorten, there is a progressive build-up in the calculated electron density along the bonds. This is accompanied by an increase in both the curvatures of the electron density, both perpendicular and parallel to each bond, and the Laplacian of the electron density distribution at the bond critical points. The cross sections of the bonds at the critical points become more circular as the angle approaches 180º. Also, the bonded radius of the oxide anion decreases about twice as much as that of the Si cation as the SiO bond length decreases and the fraction of s-character of the bond is indicated to increase. A knowledge of electron density distributions is central to our understanding of the forces that govern the structure, properties, solid state reactions, surface reactions and phase transformations of minerals. The software (CRYSTAL95 and TOPOND) used in this study to calculate the bond critical properties of the electron density and Laplacian distributions is bound to promote a deeper understanding of crystal chemistry and properties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...