ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Estuary  (4)
  • Shear instabilities  (1)
  • John Wiley & Sons  (5)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 4743–4760, doi:10.1002/2016JC012455.
    Description: Estuarine mixing is often intensified in regions where topographic forcing leads to hydraulic transitions. Observations in the salt-wedge estuary of the Connecticut River indicate that intense mixing occurs during the ebb tide in regions of supercritical flow that is accelerated by lateral expansion of the channel. The zones of mixing are readily identifiable based on echo-sounding images of large-amplitude shear instabilities. The gradient Richardson number (Ri) averaged across the mixing layer decreases to a value very close to 0.25 during most of the active mixing phase. The along-estuary variation in internal Froude number and interface elevation are roughly consistent with a steady, inviscid, two-layer hydraulic representation, and the fit is improved when a parameterization for interfacial stress is included. The analysis indicates that the mixing results from lateral straining of the shear layer, and that the rapid development of instabilities maintains the overall flow near the mixing threshold value of Ri = 0.25, even with continuous, active mixing. The entrainment coefficient can be estimated from salt conservation within the interfacial layer, based on the finding that the mixing maintains Ri = 0.25. This approach leads to a scaling estimate for the interfacial mixing coefficient based on the lateral spreading rate and the aspect ratio of the flow, yielding estimates of turbulent dissipation within the pycnocline that are consistent with estimates based on turbulence-resolving measurements.
    Description: NSF Grant Number: OCE 0926427; Devonshire Scholars program
    Description: 2017-12-12
    Keywords: Internal hydraulics ; Mixing ; Gradient Richardson number ; Estuary
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 692–712, doi:10.1002/2016JC011738.
    Description: The Connecticut River is a tidal salt wedge estuary, where advection of sharp salinity gradients through channel constrictions and over steeply sloping bathymetry leads to spatially heterogeneous stratification and mixing. A 3-D unstructured grid finite-volume hydrodynamic model (FVCOM) was evaluated against shipboard and moored observations, and mixing by both the turbulent closure and numerical diffusion were calculated. Excessive numerical mixing in regions with strong velocities, sharp salinity gradients, and steep bathymetry reduced model skill for salinity. Model calibration was improved by optimizing both the bottom roughness (z0), based on comparison with the barotropic tidal propagation, and the mixing threshold in the turbulence closure (steady state Richardson number, Rist), based on comparison with salinity. Whereas a large body of evidence supports a value of Rist ∼ 0.25, model skill for salinity improved with Rist ∼ 0.1. With Rist = 0.25, numerical mixing contributed about 1/2 the total mixing, while with Rist = 0.10 it accounted for ∼2/3, but salinity structure was more accurately reproduced. The combined contributions of numerical and turbulent mixing were quantitatively consistent with high-resolution measurements of turbulent mixing. A coarser grid had increased numerical mixing, requiring further reductions in turbulent mixing and greater bed friction to optimize skill. The optimal Rist for the fine grid case was closer to 0.25 than for the coarse grid, suggesting that additional grid refinement might correspond with Rist approaching the theoretical limit. Numerical mixing is rarely assessed in realistic models, but comparisons with high-resolution observations in this study suggest it is an important factor.
    Description: NSF Grant Number: OCE 0926427; ONR Grant Number: N00014-08-1-1115
    Description: 2017-07-28
    Keywords: Estuary ; Salt wedge ; Numerical mixing ; Turbulence closure ; Numerical model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 40 (2013): 5451–5455, doi:10.1002/2013GL057906.
    Description: Tropical Storms Irene and Lee in 2011 produced intense precipitation and flooding in the U.S. Northeast, including the Hudson River watershed. Sediment input to the Hudson River was approximately 2.7 megaton, about 5 times the long-term annual average. Rather than the common assumption that sediment is predominantly trapped in the estuary, observations and model results indicate that approximately two thirds of the new sediment remained trapped in the tidal freshwater river more than 1 month after the storms and only about one fifth of the new sediment reached the saline estuary. High sediment concentrations were observed in the estuary, but the model results suggest that this was predominantly due to remobilization of bed sediment. Spatially localized deposits of new and remobilized sediment were consistent with longer term depositional records. The results indicate that tidal rivers can intercept (at least temporarily) delivery of terrigenous sediment to the marine environment during major flow events.
    Description: This research was supported by grants from the Hudson Research Foundation (002/07A) and the National Science Foundation (1232928).
    Description: 2014-04-18
    Keywords: Sediment transport ; Tidal river ; Estuary ; Sediment trapping
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Format: image/tiff
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 122 (2017): 2042–2063, doi:10.1002/2017JF004337.
    Description: Observations and a numerical model are used to characterize sediment transport in the tidal Hudson River. A sediment budget over 11 years including major discharge events indicates the tidal fresh region traps about 40% of the sediment input from the watershed. Sediment input scales with the river discharge cubed, while seaward transport in the tidal river scales linearly, so the tidal river accumulates sediment during the highest discharge events. Sediment pulses associated with discharge events dissipate moving seaward and lag the advection speed of the river by a factor of 1.5 to 3. Idealized model simulations with a range of discharge and settling velocity were used to evaluate the trapping efficiency, transport rate, and mean age of sediment input from the watershed. The seaward transport of suspended sediment scales linearly with discharge but lags the river velocity by a factor that is linear with settling velocity. The lag factor is 30–40 times the settling velocity (mm s−1), so transport speeds vary by orders of magnitude from clay (0.01 mm s−1) to coarse silt (1 mm s−1). Deposition along the tidal river depends strongly on settling velocity, and a simple advection-reaction equation represents the loss due to settling on depositional shoals. The long-term discharge record is used to represent statistically the distribution of transport times, and time scales for settling velocities of 0.1 mm s−1 and 1 mm s−1 range from several months to several years for transport through the tidal river and several years to several decades through the estuary.
    Description: Hudson River Foundation Grant Number: 004/13A; National Science Foundation Grant Number: 1325136
    Description: 2018-05-02
    Keywords: Tidal river ; Sediment age ; Trapping efficiency ; Estuary ; Sediment transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 3081–3105, doi:10.1002/2016JC012334.
    Description: The nonhydrostatic surface and terrain-following coastal model NHWAVE is utilized to simulate a continually forced stratified shear flow in a straight channel, which is a generic problem to test the existing nonhydrostatic coastal models' capability in resolving shear instabilities in the field scale. The resolved shear instabilities in the shear layer has a Reynolds number of about 1.4 × 106, which is comparable to field observed value. Using the standard Smagorinsky closure with a grid size close to the Ozmidov length scale, simulation results show that the resolved energy cascade exceeds 1 order of magnitude and the evolution and turbulent mixing characteristics are predicted well. Two different approaches are used to estimate the turbulent dissipation rate, namely using the resolved turbulent energy spectrum and the parameterized subgrid turbulent dissipation rate, and the predicted results provide the upper and lower bounds that encompass the measured values. Model results show significantly higher turbulence in braids of shear instabilities, which is similar to field observations while both the subgrid turbulent dissipation rate and resolved vorticity field can be used as surrogates for measured high acoustic backscatter signals. Simulation results also reveal that the surface velocity divergence/convergence is an effective identifier for the front of the density current and the shear instabilities. To guide future numerical studies in more realistic domains, an evaluation on the effects of different grid resolutions and subgrid viscosity on the resolved flow field and subgrid dissipation rate are discussed.
    Description: Office of Naval Research Grant Numbers: N00014-15-1-2612 , N00014-16-1-2948; National Science Foundation Grant Numbers: OCE-1334325 , OCE-1232928; Extreme Science and Engineering Discovery Environment (XSEDE) SuperMIC Grant Number: TG-OCE100015
    Description: 2017-10-11
    Keywords: Nonhydrostatic model ; Shear instabilities ; Stratified shear flow ; Surface signatures
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...