ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismology  (3)
Collection
Keywords
Years
  • 1
    Publication Date: 2016-06-19
    Description: Earthquake source inversion is highly dependent on location determination and velocity models. Uncertainties in both the model parameters and the observations need to be rigorously incorporated into an inversion approach. Here, we show a probabilistic Bayesian method that allows formal inclusion of the uncertainties in the moment tensor inversion. This method allows the combination of different sets of far-field observations, such as P -wave and S -wave polarities and amplitude ratios, into one inversion. Additional observations can be included by deriving a suitable likelihood function from the uncertainties. This inversion produces samples from the source posterior probability distribution, including a best-fitting solution for the source mechanism and associated probability. The inversion can be constrained to the double-couple space or allowed to explore the gamut of moment tensor solutions, allowing volumetric and other non-double-couple components. The posterior probability of the double-couple and full moment tensor source models can be evaluated from the Bayesian evidence, using samples from the likelihood distributions for the two source models, producing an estimate of whether or not a source is double-couple. Such an approach is ideally suited to microseismic studies where there are many sources of uncertainty and it is often difficult to produce reliability estimates of the source mechanism, although this can be true of many other cases. Using full-waveform synthetic seismograms, we also show the effects of noise, location, network distribution and velocity model uncertainty on the source probability density function. The noise has the largest effect on the results, especially as it can affect other parts of the event processing. This uncertainty can lead to erroneous non-double-couple source probability distributions, even when no other uncertainties exist. Although including amplitude ratios can improve the constraint on the source probability distribution, the measurements are often systematically affected by noise, leading to deviation from their noise-free true values and consequently adversely affecting the source probability distribution, especially for the full moment tensor model. As an example of the application of this method, four events from the Krafla volcano in Iceland are inverted, which show clear differentiation between non-double-couple and double-couple sources, reflected in the posterior probability distributions for the source models.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-05-15
    Description: The polarity of the first motion of a seismic signal from an earthquake is an important constraint in earthquake source inversion. Microseismic events often have low signal-to-noise ratios, which may lead to difficulties estimating the correct first-motion polarities of the arrivals. This paper describes a probabilistic approach to polarity picking that can be both automated and combined with manual picking. This approach includes a quantitative estimate of the uncertainty of the polarity, improving calculation of the polarity probability density function for source inversion. It is sufficiently fast to be incorporated into an automatic processing workflow. When used in source inversion, the results are consistent with those from manual observations. In some cases, they produce a clearer constraint on the range of high-probability source mechanisms, and are better constrained than source mechanisms determined using a uniform probability of an incorrect polarity pick.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-06-28
    Description: We present relatively relocated earthquake hypocentres for 〉1000 microearthquakes ( M L 〈 3) that occurred during the 2 weeks immediately prior to the 2010 March 20 fissure eruption at Fimmvörðuháls on the flank of Eyjafjallajökull volcano in Iceland. Our hypocentre locations lie predominantly in horizontally separated clusters spread over an area of 10 km 2 and approximately 4 km below sea level (5 km below the surface). Seismic activity in the final 4 d preceding the eruption extended to shallower levels 〈2 km below sea level and propagated to the surface at the Fimmvörðuháls eruption site on the day the eruption started. We demonstrate using synthetic data that the observed apparent ~1 km vertical elongation of seismic clusters is predominantly an artefact caused by only small errors (0.01–0.02 s) in arrival time data. Where the signal-to-noise ratio was sufficiently good to make subsample arrival time picks by cross-correlation of both P - and S -wave arrivals, the mean depth of 103 events in an individual cluster were constrained to 3.84 ± 0.06 km. Epicentral locations are significantly less vulnerable to arrival time errors than are depths for the seismic monitoring network we used. Within clusters of typically 100 recorded earthquakes, most of the arrivals exhibit similar waveforms and identical patterns of P -wave first-motion polarities across the entire monitoring network. The clusters of similar events comprise repetitive sources in the same location with the same orientations of failure, probably on the same rupture plane. The epicentral clustering and similarity of source mechanisms suggest that much of the seismicity was generated at approximately static constrictions to magma flow in an inflating sill complex. These constrictions may act as a form of valve in the country rock, which ruptures when the melt pressure exceeds a critical level, then reseals after a pulse of melt has passed through. This would generate recurring similar source mechanisms on the same weak fault plane as the connection between segments of the sill system is repeatedly refractured in the same location. We infer that the magmatic intrusion causing most of the seismicity was likely to be a laterally inflating complex of sills at about 4 km depth, with seismogenic pinch-points occurring between aseismic compartments of the sills, or between adjacent magma lobes as they inflated. During the final 4 d preceding the eruption onset between 22:30 and 23:30 UTC on 2010 March 20, the seismicity suggests that melt progressed upwards to a depth of ~2 km. This seismicity was probably caused by fracturing of the country rock at the margins of the propagating dyke. Subsequently, on the morning of the eruption a dyke propagated eastward from the region of precursory seismic activity to the Fimmvörðuháls eruption site.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...