ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismology  (2)
Collection
Keywords
  • Seismology  (2)
Years
  • 1
    Publication Date: 2015-08-29
    Description: The Gaussian wavelet is widely used as a shaping wavelet for scattered wave imaging with P receiver functions due to widespread use of the iterative deconvolution method. We show the Gaussian wavelet degrades the resolution of plane wave migration by comparing results from the latest USArray data shaped with Gaussian and Ricker wavelets. We use simulations of primary conversions from the 410 and 660 km discontinuity to show this is a property of the algorithm and not the data. Simulations also show the more conventional common conversion point (CCP) method is not subject to this behaviour for flat horizons, but the CCP method penalizes dipping horizons focusing only nearly horizontal features for any choice of shaping wavelet. We explain these results using the concept of migration impulse response for an individual data sample. Applications to data from USArray show dramatic improvements in the resolution of plane wave migration images produced using Ricker wavelet in comparison to a comparable resolution a Gaussian shaping wavelet. The 410 and 660 discontinuities are resolved to higher precision, and we find the upper mantle and transition zone are full of previously unresolved dipping horizons that remain to be interpreted.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-18
    Description: This paper describes a generalization of the iterative deconvolution method commonly used as a component of passive array wavefield imaging. We show that the iterative method should be thought of as a sparse output deconvolution method with the number of terms retained dependent on the convergence criteria. The generalized method we introduce uses an inverse operator to shape the assumed wavelet to a peaked function at zero lag. We show that the conventional method is equivalent to using a damped least-squares spiking filter with extremely large damping and proper scaling. In that case, the inverse operator used in the generalized method reduces to the cross-correlation operator. The theoretical insight of realizing the output is a sparse series provides a basis for the second important addition of the generalized method—an output shaping wavelet. A constant output shaping wavelet is a critical component in scattered wave imaging to avoid mixing data of variable bandwidth. We demonstrate the new approach can improve resolution by using an inverse operator tuned to maximize resolution. We also show that the signal-to-noise ratio of the result can be improved by applying a different convergence criterion than the standard method, which measures the energy left after each iteration. The efficacy of the approach was evaluated with synthetic experiment in various signal and noise conditions. We further validated the approach with real data from the USArray. We compared our results with data from the EarthScope Automated Receiver Survey and found that our results show modest improvements in consistency measured by correlation coefficients with station stacks and a reduced number of outliers.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...