ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismology  (3)
Collection
Keywords
Years
  • 1
    Publication Date: 2015-07-30
    Description: We investigate spatiotemporal variations of the crustal stress field orientation along the rupture zones of the 1999 August Izmit M w 7.4 and November Düzce M w 7.1 earthquakes at the North Anatolian Fault zone (NAFZ) in NW Turkey. Our primary focus is to elaborate on the relation between the state of the crustal stress field and distinct seismotectonic features as well as variations of coseismic slip within the seismogenic layer of the crust. To achieve this, we compile an extensive data base of hypocentres and first-motion polarities including a newly derived local hypocentre catalogue extending from 2 yr prior (1997) to 2 yr after (2001) the Izmit and Düzce main shocks. This combined data set allows studying spatial and temporal variations of stress field orientation along distinct fault segments for the pre- and post-seimic phase of the two large earthquakes in detail. Furthermore, the occurrence of two M  〉 7 earthquakes in rapid succession gives the unique opportunity to analyse the 87-d-long ‘inter-seismic phase’ between them. We use the MOTSI (first MOTion polarity Stress Inversion) procedure directly inverting first-motion polarities to study the stress field evolution of nine distinct segments. In particular, this allows to determine the stress tensor also for the pre- and post-seismic phases when no stable single-event focal mechanisms can be determined. We observe significantly different stress field orientations along the combined 200-km-long rupture in accordance with lateral variations of coseismic slip and seismotectonic setting. Distinct vertical linear segments of the NAFZ show either pure-strike slip behaviour or transtensional and normal faulting if located near pull-apart basins. Pull-apart structures such as the Akyazi and Düzce basins show a predominant normal faulting behaviour along the NAFZ and reflect clearly different characteristic from neighbouring strike-slip segments. Substantial lateral stress field heterogeneity following the two main shocks is observed that declines with time towards the post-seismic period that rather reflects the regional right-lateral strike-slip stress field.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-08
    Description: Seismic moment tensors can provide information on the size and orientation of fractures producing acoustic emissions (AEs) and on the stress conditions in the sample. The moment tensor inversion of AEs is, however, a demanding procedure requiring carefully calibrated sensors and accurate knowledge of the velocity model. In field observations, the velocity model is usually isotropic and time independent. In laboratory experiments, the velocity is often anisotropic and time dependent and attenuation might be significant due to opening or closure of microcracks in the sample during loading. In this paper, we study the sensitivity of the moment tensor inversion to anisotropy of P -wave velocities and attenuation. We show that retrieved moment tensors critically depend on anisotropy and attenuation and their neglect can lead to misinterpretations of the source mechanisms. The accuracy of the inversion also depends on the fracturing mode of AEs: tensile events are more sensitive to P -wave anisotropy and attenuation than shear events. We show that geometry of faulting in anisotropic rocks should be studied using the source tensors, since the P - and T -axes of the moment tensors are affected by velocity anisotropy and deviate from the true orientation of faulting. The stronger the anisotropy is, the larger the deviations are. Finally, we prove that the moment tensor inversion applied to a large dataset of AEs can be utilized to provide information on the attenuation parameters of the rock sample. The method is capable of measuring anisotropic attenuation in the sample and allows for detection of dilatant cracking according to the stress regime.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-12-21
    Description: In this paper, an underground experiment at the Äspö Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multistage hydraulic fracturing with minimal impact on the environment, that is, seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive and pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Äspö HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocentres obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multistage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broad-band recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Ävrö granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events are found to be smaller in the progressive treatment with frequent phases of depressurization.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...