ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-13
    Description: Current earthquake early warning (EEW) systems lack the ability to appropriately handle multiple concurrent earthquakes, which led to many false alarms during the 2011 Tohoku earthquake sequence in Japan. This paper uses a Bayesian probabilistic approach to handle multiple concurrent events for EEW. We implement the theory using a two-step algorithm. First, an efficient approximate Bayesian model class selection scheme is used to estimate the number of concurrent events. Then, the Rao-Blackwellized Importance Sampling method with a sequential proposal probability density function is used to estimate the earthquake parameters, that is hypocentre location, origin time, magnitude and local seismic intensity. A real data example based on 2 months data (2011 March 9–April 30) around the time of the 2011 M 9 Tohoku earthquake is studied to verify the proposed algorithm. Our algorithm results in over 90 per cent reduction in the number of incorrect warnings compared to the existing EEW system operating in Japan.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-28
    Description: We present a fully Bayesian inversion of kinematic rupture parameters for the 2011 M w 9 Tohoku-oki, Japan earthquake. Albeit computationally expensive, this approach to kinematic source modelling has the advantage of producing an ensemble of slip models that are consistent with physical a priori constraints, realistic data uncertainties, and realistic but simplistic uncertainties in the physics of the kinematic forward model, all without being biased by non-physical regularization constraints. Combining 1 Hz kinematic GPS, static GPS offsets, seafloor geodesy and near-field and far-field tsunami data into a massively parallel Monte Carlo simulation, we construct an ensemble of samples of the posterior probability density function describing the evolution of fault rupture. We find that most of the slip is concentrated in a depth range of 10–20 km from the trench, and that slip decreases towards the trench with significant displacements at the toe of wedge occurring in just a small region. Estimates of static stress drop and rupture velocity are ambiguous. Due to the spatial compactness of the fault rupture, the duration of the entire rupture was less than approximately 150 s.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...