ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismology  (8)
  • HIV reverse transcriptase
Collection
Keywords
Years
  • 1
    Publication Date: 2015-04-17
    Description: High-melt areas of glaciers and ice sheets foster a rich spectrum of ambient seismicity. These signals not only shed light on source mechanisms (e.g. englacial fracturing, water flow, iceberg detachment, basal motion) but also carry information about seismic wave propagation within glacier ice. Here, we present two approaches to measure and potentially monitor phase velocities of high-frequency seismic waves (≥1 Hz) using naturally occurring glacier seismicity. These two approaches were developed for data recorded by on-ice seasonal seismic networks on the Greenland Ice Sheet and a Swiss Alpine glacier. The Greenland data set consists of continuous seismograms, dominated by long-term tremor-like signals of englacial water flow, whereas the Alpine data were collected in triggered mode producing 1–2 s long records that include fracture events within the ice (‘icequakes’). We use a matched-field processing technique to retrieve frequency-dependent phase velocity measurements for the Greenland data. In principle, this phase dispersion relationship can be inverted for ice sheet thickness and bed properties. For these Greenland data, inversion of the dispersion curve yields a bedrock depth of 541 m, which may be too small by as much as 35 per cent. We suggest that the discrepancy is due to lateral changes in ice sheet depth and bed properties beneath the network, which may cause unaccounted mixing of surface wave modes in the dispersion curve. The Swiss Alpine icequake records, on the other hand, allow for reconstruction of the impulse response between two seismometers. The direct and scattered wave fields from the vast numbers of icequake records (tens of thousands per month) can be used to measure small changes in englacial velocities and thus monitor structural changes within the ice.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0014-5793
    Keywords: HIV reverse transcriptase ; Photoaffinity labeling ; dCTP analog
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-03-11
    Description: Temporal changes in seismic anisotropy can be interpreted as variations in the orientation of cracks in seismogenic zones, and thus as variations in the stress field. Such temporal changes have been observed in seismogenic zones before and after earthquakes, although they are still not well understood. In this study, we investigate the azimuthal polarization of surface waves in anisotropic media with respect to the orientation of anisotropy, from a numerical point of view. This technique is based on the observation of the signature of anisotropy on the nine-component cross-correlation tensor (CCT) computed from seismic ambient noise recorded on pairs of three-component sensors. If noise sources are spatially distributed in a homogeneous medium, the CCT allows the reconstruction of the surface wave Green's tensor between the station pairs. In homogeneous, isotropic medium, four off-diagonal terms of the surface wave Green's tensor are null, but not in anisotropic medium. This technique is applied to three-component synthetic seismograms computed in a transversely isotropic medium with a horizontal symmetry axis, using a spectral element code. The CCT is computed between each pair of stations and then rotated, to approximate the surface wave Green's tensor by minimizing the off-diagonal components. This procedure allows the calculation of the azimuthal variation of quasi-Rayleigh and quasi-Love waves. In an anisotropic medium, in some cases, the azimuth of seismic anisotropy can induce a large variation in the horizontal polarization of surface waves. This variation depends on the relative angle between a pair of stations and the direction of anisotropy, the amplitude of the anisotropy, the frequency band of the signal and the depth of the anisotropic layer.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-17
    Description: We present a new technique for deriving detailed information on seismic velocities of the subsurface material from continuous ambient noise recorded by spatially dense seismic arrays. This method uses iterative double beamforming between various subarrays to extract surface wave contributions from the ambient-noise data in complex environments with unfavourable noise-source distributions. The iterative double beamforming extraction makes it possible to retrieve large amounts of Rayleigh wave traveltime information in a wide frequency band. The method is applied to data recorded by a highly dense Nodal array with 1108 vertical geophones, centred on the damage zone of the Clark branch of the San Jacinto Fault Zone south of Anza, California. The array covers a region of ~650 x 700 m 2 , with instrument spacing of 10–30 m, and continuous recording at 500 samples s –1 over 30 d in 2014. Using this iterative double beamforming on subarrays of 25 sensors and cross-correlations between all of the station pairs, we separate surface waves from body waves that are abundant in the raw cross-correlation data. Focusing solely on surface waves, maps of traveltimes are obtained at different frequencies with unprecedented accuracy at each point of a 15-m-spacing grid. Group velocity inversions at 2–4 Hz reveal depth and lateral variations in the structural properties within and around the San Jacinto Fault Zone in the study area. This method can be used over wider frequency ranges and can be combined with other imaging techniques, such as eikonal tomography, to provide unprecedented detailed structural images of the subsurface material.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-12-05
    Description: We present a novel optimization approach to improve the convergence of interstation coda correlation functions towards the medium's empirical Green's function. For two stations recording a series of impulsive events in a multiply scattering medium, we explore the impact of coda window selection through a Markov Chain Monte Carlo scheme, with the aim of generating a gather of correlation functions that is the most coherent and symmetric over events, thus recovering intuitive elements of the interstation Green's function without any nonlinear post-processing techniques. This approach is tested here for a 2-D acoustic finite difference model, where a much improved correlation function is obtained, as well as for a database of small impulsive icequakes recorded on Erebus Volcano, Antarctica, where similar robust results are shown. The average coda solutions, as deduced from the posterior probability distributions of the optimization, are further representative of the scattering strength of the medium, with stronger scattering resulting in a slightly delayed overall coda sampling. The recovery of singly scattered arrivals in the coda of correlation functions are also shown to be possible through this approach, and surface wave reflections from outer craters on Erebus volcano were mapped in this fashion. We also note that, due to the improvement of correlation functions over subsequent events, this approach can further be used to improve the resolution of passive temporal monitoring.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-06
    Description: We present a novel optimization approach to improve the convergence of interstation coda correlation functions towards the medium's empirical Green's function. For two stations recording a series of impulsive events in a multiply scattering medium, we explore the impact of coda window selection through a Markov Chain Monte Carlo scheme, with the aim of generating a gather of correlation functions that is the most coherent and symmetric over events, thus recovering intuitive elements of the interstation Green's function without any nonlinear post-processing techniques. This approach is tested here for a 2-D acoustic finite difference model, where a much improved correlation function is obtained, as well as for a database of small impulsive icequakes recorded on Erebus Volcano, Antarctica, where similar robust results are shown. The average coda solutions, as deduced from the posterior probability distributions of the optimization, are further representative of the scattering strength of the medium, with stronger scattering resulting in a slightly delayed overall coda sampling. The recovery of singly scattered arrivals in the coda of correlation functions are also shown to be possible through this approach, and surface wave reflections from outer craters on Erebus volcano were mapped in this fashion. We also note that, due to the improvement of correlation functions over subsequent events, this approach can further be used to improve the resolution of passive temporal monitoring.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-09-12
    Description: We present an analysis of the M w = 5.3 earthquake that occurred in the Southeast Indian Ridge on 2010 February 11 using USArray data. The epicentre of this event is antipodal to the USArray, providing us with an opportunity to observe in details the antipodal focusing of seismic waves in space and time. We compare the observed signals with synthetic seismograms computed for a spherically symmetric earth model (PREM). A beamforming analysis is performed over the different seismic phases detected at antipodal distances. Direct spatial snapshots of the signals and the beamforming results show that the focusing is well predicted for the first P -wave phases such as PKP or PP . However, converted phases ( SKSP , PPS ) show a deviation of the energy focusing to the south, likely caused by the Earth's heterogeneity. Focusing of multiple S -wave phases strongly deteriorates and is barely observable.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-07-13
    Description: This study presents a depth inversion of Scholte wave group and phase velocity maps obtained from cross-correlation of 6.5 hr of noise data from the Valhall Life of Field Seismic network. More than 2 600 000 vertical–vertical component cross-correlations are computed from the 2320 available sensors, turning each sensor into a virtual source emitting Scholte waves. We used a traditional straight-ray surface wave tomography to compute the group velocity map. The phase velocity maps have been computed using the Eikonal tomography method. The inversion of these maps in depth are done with the Neighbourhood Algorithm. To reduce the number of free parameters to invert, geological a priori information are used to propose a power-law 1-D velocity profile parametrization extended with a gaussian high-velocity layer where needed. These parametrizations allowed us to create a high-resolution 3-D S -wave model of the first 600 m of the Valhall subsurface and to precise the locations of geological structures at depth. These results would have important implication for shear wave statics and monitoring of seafloor subsidence due to oil extraction. The 3-D model could also be a good candidate for a starting model used in full-waveform inversions.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-05-05
    Description: We investigated the shallow structure of the Solfatara, a volcano within the Campi Flegrei caldera, southern Italy, using surface waves as a diagnostic tool. We analysed data collected during the RICEN campaign, where a 3-D active seismic experiment was performed on a dense regular grid of 90 m  x  115 m using a Vibroseis as the seismic source. After removal of the source time function, we analysed the surface wave contribution to the Green's function. Here, a 1-D approximation can hold for subgrids of 40 m  x  40 m. Moreover, we stacked all of the signals in the subgrid according to source–receiver distance bins, despite the absolute location of the source and the receiver, to reduce the small-scale variability in the data. We then analysed the resulting seismic sections in narrow frequency bands between 7 and 25 Hz. We obtained phase and group velocities from a grid search, and a cost function based on the spatial coherence of both the waveforms and their envelopes. We finally jointly inverted the dispersion curves of the phase and group velocities to retrieve a 1-D S -wave model local to the subgrid. Together, the models provided a 3-D description of the S -wave model in the area. We found that the maximum penetration depth is 15 m. In the first 4 m, we can associate the changes in the S -wave field to the temperature gradient, while at greater depths, the seismic images correlate with the resistivity maps, which indicate the water layer close to the Fangaia area and an abrupt variation moving towards the northeast.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...