ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    FEBS Letters 201 (1986), S. 41-45 
    ISSN: 0014-5793
    Keywords: (Bovine cerebellum) ; Amino acid sequence ; Calcium-binding protein ; Vitamin D
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-05
    Description: We conduct a numerical experiment to investigate potential bias in measurements of S -wave splitting (apparent differences between the arrival times of SH and SV phases) for waves propagating close to the core–mantle boundary (CMB) in the D'' layer. The bias is defined as the discrepancy between shear wave splitting measured from finite frequency synthetic seismograms (‘apparent splitting’) and the splitting predicted by ray theory, which is a high-frequency approximation. For simple isotropic models, we find biases which are typically between 0.5 and 4 s, depending on the model, the Q structure and the dominant period of the synthetics. The bias increases for lower frequencies or lower Q values. The epicentral distance at which the bias starts depends on the frequency and the Q structure. We also compute synthetics for models based on mineral physics (using the elastic constants under lower-mantle pressure and temperature conditions, taking into account the phase transition from Mg-perovskite to Mg-post-perovskite) and geodynamics (the thermal boundary layer) and find that the depth of the positive velocity jump associated with the phase transition and the depth range over which the velocity decreases (due to temperature increases) in the thermal boundary layer significantly influence the wavefield in the lowermost mantle. For example, in cold regions beneath subduction zones, wavefields for SH and SV differ greatly due to the steep velocity decrease close to the CMB. For complex models, apparent splitting can also arise from the possibility that low amplitude direct phases might be overlooked, and larger amplitude later phases might instead incorrectly be picked as the direct arrival. Biases of the type investigated in this study combine with other sources of uncertainty for splitting in D'' (e.g. the correction for upper-mantle anisotropy and the difference between SH and SV ray paths) to make a precise evaluation of the anisotropy in D'' difficult.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-30
    Description: We infer 3-D localized shear velocity structure in the lowermost 400 km of the mantle at the western edge of the Pacific large low shear velocity province (LLSVP) by applying waveform inversion to transverse component body-wave waveforms from the F-net seismic array in Japan. Our data set consists of relatively long period (12.5–200 s) broad-band seismic waveforms of Tonga-Fiji deep focus and intermediate deep earthquakes. We conduct several tests to confirm the robustness of the inversion results. We find two low-velocity zones at the bottom of the target region, with a high-velocity zone in the middle, and a low-velocity zone above the high-velocity zone and contiguous with the two deeper low-velocity zones at a depth of 200–300 km above the core-mantle boundary (CMB). This supports the idea that the Pacific LLSVP may be an aggregation of small upwelling plumes rather than a single large thermochemical pile.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-12
    Description: We investigate the elastic and anelastic structure of the lowermost mantle at the western edge of the Pacific large low shear velocity province (LLSVP) by inverting a collection of S and ScS waveforms. The transverse component data were obtained from F-net for 31 deep earthquakes beneath Tonga and Fiji, filtered between 12.5 and 200 s. We observe a regional variation of S and ScS arrival times and amplitude ratios, according to which we divide our region of interest into three subregions. For each of these subregions, we then perform 1-D (depth-dependent) waveform inversions simultaneously for radial profiles of shear wave velocity ( V S ) and seismic quality factor ( Q ). Models for all three subregions show low V S and low Q structures from 2000 km depth down to the core–mantle boundary. We further find that V S and Q in the central subregion, sampling the Caroline plume, are substantially lower than in the surrounding regions, whatever the depth. In the central subregion, V S -anomalies with respect to PREM (d V S ) and Q are about –2.5 per cent and 216 at a depth of 2850 km, and –0.6 per cent and 263 at a depth of 2000 km. By contrast, in the two other regions, d V S and Q are –2.2 per cent and 261 at a depth of 2850 km, and –0.3 per cent and 291 at a depth of 2000 km. At depths greater than ~2500 km, these differences may indicate lateral variations in temperature of ~100 K within the Pacific LLSVP. At shallower depths, they may be due to the temperature difference between the Caroline plume and its surroundings, and possibly to a small fraction of iron-rich material entrained by the plume.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...