ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Chlorophyll-protein complexes ; Gabaculine ; Heme ; Light stress ; Photoinhibition ; Secale
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The apoprotein of the enzyme catalase (EC 1.11.1.6) was shown to exhibit a light-dependent turnover in leaves. Present results indicate that photoinactivation of the enzyme was not accompanied by a synchronous destruction and new synthesis of its heme moiety. In rye (Secale cereale L.) leaves the catalase content was not depleted in light when porphyrin synthesis was inhibited by gabaculine. Photoinactivation of purified bovine liver or rye leaf catalase in vitro was not accompanied by concomitant damage to the heme groups. Both the incorporation of δ-[3H]aminolevulinic acid ([3H]ALA) into catalase-heme and its apparent turnover increased with irradiance. However, the apparent half-life of the catalase-heme was much longer than that of its apoprotein. It is probable that not only degradation but also an exchange with the free heme pool contributed to the apparent turnover of radioactivity of the catalase-heme. Part of the chlorophyll (Chl) associated with photosystem II (PS II) had a preferential light-induced turnover, and repair of PS II appeared to require new Chl synthesis also in mature green rye leaves. The activity of PS II, indicated by the ratio of variable to maximal fluorescence (Fv/Fm), rapidly declined in the presence of gabaculine in light and the reaction-center proteins D1 and D2 were depleted. When segments of mature green rye leaves were labeled with [3H]ALA and incorporation into Chl-protein complexes analysed after electrophoretic separation in the presence of Deriphat, the highest radioactivity was observed in the core complex of PS II, while PS I and the light-harvesting complex of PS II (LHC II) were unlabeled. In greening etiolated leaves highest incorporation was observed in LHC II. Both the incorporation of [3H]ALA into the PS II core complex of green rye leaves and its turnover increased with irradiance. However, the apparent half-life of the PS II-bound labeled porphyrin compounds (mainly Chl) was considerably longer than that of the reaction-center protein D1 under identical conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 149 (1980), S. 163-169 
    ISSN: 1432-2048
    Keywords: Chloroplast biogenesis (RNA) ; Ribosomes, plastidic ; RNA (chloroplastic) ; RNA polymerase ; Secale ; Temperature and RNA polymerase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In the leaves of rye seedlings (Secale cereale L.) grown at an elevated temperature of 32°C the formation of plastidic 70S ribosomes is specifically prevented. The resulting plastid ribosome-deficient leaves, which are chlorotic in light, represent a system for the identification of translation products of the 80S ribosomes among the chloroplastic proteins. Searching for the primary heat-sensitive event causing the 70S ribosome-deficiency, the thermostability of the chloroplastic capacity for RNA synthesis was investigated. The RNA polymerase activity of isolated normal chloroplasts from 22°-grown rye leaves was not inactivated in vitro at temperatures between 30° and 40°C. The ribosome-deficient plastids purified from bleached 32°-grown leaf parts contained significant RNA polymerase activity which was, however, lower than in functional chloroplasts. After application of [3H]uridine to intact leaf tissues [3H]uridine incorporation was found in ribosome-deficient plastids of 32°C-grown leaves. The amount of incorporation was similar to that in the control chloroplasts from 22°C-grown leaves. According to these results, it is unlikely that the non-permissive temperature (32°C) causes a general inactivation of the chloroplastic RNA synthesis in rye leaves.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Planta 135 (1977), S. 83-88 
    ISSN: 1432-2048
    Keywords: Chlorophyll ; Chloroplast biogenesis ; High-temperature sensitivity ; Plastid ribosomes ; Ribosomes ; Secale
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The leaves of young rye plants (Secale cereale L.) grown at 32° were deficient in chlorophyll and in chloroplastic rRNA as compared to those grown at 22°, which developed normally. Both chlorophyll accumulation and the formation of plastidic rRNA were largely restored at 32° when the plants were transfered several times for 1 h per day to 22°. In the chlorotic 32°-grown rye leaves the in vivo activity of δ-aminolevulinate synthetase was very low. Aminolevulinate dehydratase however, exhibited high activity in extracts from 32°-grown leaves and was localized in the plastid fraction isolated from the chlorotic leaf tissue. After application of δ-aminolevulinic acid to chlorotic parts of leaves growing at 32°, protochlorophyll(ide) was formed and accumulated in the dark. In the light, the protochlorophyll(ide) was photooxidized at 32°. The results suggest a cytoplasmic site of synthesis for the series of enzymes converting δ-aminolevulinate to protochlorophyll(ide). It is concluded that an inhibition of δ-aminolevulinate synthetase and the photooxidation of protochlorophyll(ide) or chlorophyll are responsible for the chlorosis of the leaves at 32°.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Chloroplast biogenesis ; Cytokinins ; Enzyme development ; Photoregulation ; Ribulose-1,5-bisphosphate carboxylase ; Secale
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The role of cytokinin in plastid biogenesis was investigated in etiolated rye leaves (Secale cereale L.) and compared with the effect of white light. Cytokinin deficiency of the leaves was induced by early excision of the seedling roots and reversed by the application of kinetin. The cytokinin supply had a much greater influence on plastid biogenesis than on leaf growth in general. The activities of several chloroplastic enzymes were increased 200%–400% after kinetin treatment of cytokinin-depleted leaves. The activity of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and the amount of fraction-I protein even showed a sevenfold increase. In cytokinin-depleted leaves the development of ribulose-1,5-bisphosphate carboxylase and NADP-glyceraldehydephosphate dehydrogenase was specifically, and markedly inhibited by actinomycin D. The inhibition was partially or even completely overcome after treatment with kinetin. However, under all conditions, RNA synthesis of the leaves, was only partially inhibited by actinomycin D. According to immunologic studies, all dark-grown leaves, in addition to the complete enzyme, contained an excess of free small subunit of ribulose-1,5-bisphosphate carboxylase that was absent in mature light-grown leaves. The most striking accumulation of free small subunit, protein occurred in cytokinin-depleted dark-grown leaves, indicating a deficiency of the plastidic synthesis of the large subunit. The capacity as well as the activity of plastidic protein synthesis was preferentially increased by cytokinin and light. Cytokinin increased, the amount of plastidic ribosomes per leaf and relative to the amount of cytoplasmic ribosomes. While the percentage of cytoplasmic ribosomes bound as polyribosomes was little affected by the cytokinin supply, the proportion of plastidic polyribosomes was increased from 11% to 18% after kinetin treatment of cytokinin-depleted leaves. In the light, the proportion of plastidic polyribosomes reached 39% of the total plastidic ribosomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Planta 142 (1978), S. 67-73 
    ISSN: 1432-2048
    Keywords: Cytokinins ; Growth (leaves) ; Nucleic acid synthesis ; Photoregulation ; Polyribosomes ; Secale
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In etiolated rye seedlings (Secale cereale L.) the cytokinin supply controls leaf growth. Dry weight and total amino-nitrogen, protein, total nucleic acid, DNA, and rRNA levels were similarly lowered in leaves depleted of their endogenous cytokinin supply by early excision of the seedling roots and increased by 70–100% after the addition of kinetin. The proportion of cytoplasmic ribosomes bound as polyribosomes was only slightly increased from 40% in cytokinin-deficient to 50% in kinetin-treated darkgrown leaves. White light increased the polyribosome proportion to 61%. In cytokinin-supplied leaves uptake and accumulation of L-[3H]leucine were greater than in cytokinin-deficient leaves. Under all conditions of cytokinin supply the same proportion of the total amino nitrogen content (80%) was present as protein nitrogen and virtually, the same percentage (60%) of the total uptake of L-[3H]leucine was incorporated into protein in dark-grown leaves. In light, significantly higher proportions of the amino nitrogen content and of the L-[3H]leucine uptake were incorporated into protein. The results suggest that the accumulation of substrate is a main cytokinin-controlled step determining the growth of the leaves.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2048
    Keywords: Chaperone ; Chloroplasts ; Chromoplasts ; Heat-shock protein ; Secale
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A partial cDNA which codes for the β-subunit of a plastidic chaperonin 60 (cpn60-β) from rye (Secale cereale L.) leaves was identified and sequenced, except for 46 amino acids of the N-terminus of the mature protein and the transit sequence. This is the first cpn60-β sequence determined for a monocotyledonous plant. Specific antibodies against cpn60-β were affinity-purified from an antiserum raised against the total soluble protein fraction of ribosome-deficient plastids. The localization of cpn60-β in chloroplasts or non-green plastids was confirmed by immunodetection in Percoll gradient-purified organelles. The expression and occurrence of cpn60-β was analysed by immunoblotting with the specific antibodies and Northern hybridization. The cpn60-β protein was constitutively expressed in various green and non-green tissues. It was evenly distributed along the major part of a rye leaf, while highest transcript levels occurred in the youngest and oldest leaf sections. The expression of the cpn60-β protein was not enhanced by a heat-shock treatment at 42 °C. The cpn60-β transcript and protein were more strongly expressed in various non-green, for instance etiolated, 70S-ribosome-deficient 32 °C-grown, or herbicide-bleached tissues, than in green leaves of rye. A rapid increase in the cpn60-β transcript level was also observed when green leaves were transferred from light to darkness while the protein level was not affected. The dark-induced increase in the cpn60-β transcript was totally suppressed in the presence of 2% sucrose. Inhibitor treatments suggested that the change in cpn60-β transcript level was not related to changes of the ATP supply of the tissue. While the large subunit of the photosynthetic protein ribulose-1,5-bisphosphate carboxylase was largely degraded during ripening of tomato fruits, high levels of cpn60-β were detected in tomato chromoplasts and in the yellow flower petals of Narcissus. Low levels of cpn60-β were detected in root tissue.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 72 (1986), S. 359-363 
    ISSN: 1432-2242
    Keywords: Evolution (wheat) ; Isozymes ; Secale ; Triosephosphate isomerase ; Triticum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The patterns of chloroplastic and cytosolic isoenzymes of triosephosphate isomerase were analysed by immunoblotting in leaves of rye, wheat, and some species of Aegilops or Agropyrum. While rye contained solely one chloroplastic and one cytosolic isoenzyme, wheat had a much more complex pattern which can be explained by the presence of three genomes in 6 x wheats (AABBDD) with distinct triosephosphate isomerase genes that provided different subunit species for the dimeric isoenzyme molecules. The 6 × wheats contained five, the 4 × wheats three, and the 2 × wheats only one chloroplastic isoenzyme band. The isoenzyme patterns were in accordance with a potential origin of one of the three chloroplastic triosephosphate isomerase genes of 6 × wheats from an Aegilops ancestor. The descent of the other two genes was, however, not in accordance with common contentions on the general evolution of cultural wheats. In the reciprocal intergeneric hybrids Secalotricum and Triticale both the chloroplastic and the cytosolic isoenzyme patterns of rye and wheat were biparentally inherited, indicating that both isoenzymes were controlled by nuclear genes. When monitored by immunoblotting the chloroplastic triosephosphate isomerase isoenzymes may provide useful genetic markers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...