ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Salt marsh  (2)
  • Air-sea gas exchange  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C12020, doi:10.1029/2011JC006998.
    Description: A three dimensional model of Arctic Ocean circulation and mixing, with a horizontal resolution of 18 km, is overlain by a biogeochemical model resolving the physical, chemical and biological transport and transformations of phosphorus, alkalinity, oxygen and carbon, including the air-sea exchange of dissolved gases and the riverine delivery of dissolved organic carbon. The model qualitatively captures the observed regional and seasonal trends in surface ocean PO4, dissolved inorganic carbon, total alkalinity, and pCO2. Integrated annually, over the basin, the model suggests a net annual uptake of 59 Tg C a−1, within the range of published estimates based on the extrapolation of local observations (20–199 Tg C a−1). This flux is attributable to the cooling (increasing solubility) of waters moving into the basin, mainly from the subpolar North Atlantic. The air-sea flux is regulated seasonally and regionally by sea-ice cover, which modulates both air-sea gas transfer and the photosynthetic production of organic matter, and by the delivery of riverine dissolved organic carbon (RDOC), which drive the regional contrasts in pCO2 between Eurasian and North American coastal waters. Integrated over the basin, the delivery and remineralization of RDOC reduces the net oceanic CO2 uptake by ~10%.
    Description: This study has been carried out as part of ECCO2 and SASS (Synthesis of the Arctic System Science) projects funded by NASA and NSF, respectively. MM and MJF are grateful for support from the National Science Foundation (ARC-0531119 and ARC-0806229) for financial support. MM also acknowledges NASA for providing computer time, the use of the computing facilities at NAS center and also the Scripps post-doctoral program for further financial support that helped to complete the manuscript. RMK also acknowledges NOAA for support (NA08OAR4310820 and NA08OAR4320752).
    Description: 2012-06-15
    Keywords: Air-sea gas exchange ; Biogeochemical cycles ; Land-ocean coupling ; Numerical modeling ; Ocean carbon cycle ; Polar oceans
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2008. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 369 (2008): 193-204, doi:10.3354/meps07644.
    Description: Salt marshes are important coastal ecosystems whose trophic function can be monitored with stable isotopes of abundant fish biosentinel species such as the mummichog Fundulus heteroclitus and the Atlantic silverside Menidia menidia. We compared movement patterns and feeding biology of these species in the summers of 1999 and 2000 in the Rowley River salt marsh estuary north of Boston, Massachusetts, USA. A 15N tracer addition experiment showed that fish of both species were more resident than transient, with mummichogs resident at scales of 1 km or less. Natural abundance stable isotope C, N, and S distributions showed that mummichogs feed more strongly in the benthic food web while silversides feed more in the planktonic food web, with % benthic feeding respectively averaging 58 ± 5 and 32 ± 3% (mean ± 95% confidence limit, CL). For both species, isotope results indicated considerable individual specialization in foraging behavior, likely related to use of channel habitat versus use of the marsh. Power analysis showed that measuring 3 composite samples each comprising 10 to 15 individual fish should provide relatively low errors of 0.5‰ (95% CL) or less around stable isotope averages. Use of such composite samples in monitoring programs will allow detection of significant temporal and spatial changes in benthic-planktonic coupling for salt marsh ecosystems, as recorded in average fish diets. Analyzing some individual fish also is recommended to obtain more detailed information on fish food sources, feeding specializations, and end-member isotope values used in estimating importance of benthic and planktonic food sources.
    Description: This work was supported by Louisiana SeaGrant Projects R/CEH-13 and R-EFH-07, NOAA MULTISTRESS award 16OP2670, and NSF award DEB 9815598 and BES SGER award 0553138-001.
    Keywords: Stable isotope analysis ; Salt marsh ; Fish ; Monitoring ; Power analysis ; Benthic microalgae ; Spartina
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © Ecological Society of America, 2009. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 90 (2009): 2535-2546, doi:10.1890/08-1051.1.
    Description: We compared processing and fate of dissolved NO3− in two New England salt marsh ecosystems, one receiving natural flood tide concentrations of 1–4 μmol NO3−/L and the other receiving experimentally fertilized flood tides containing 70–100 μmol NO3−/L. We conducted simultaneous 15NO3− (isotope) tracer additions from 23 to 28 July 2005 in the reference (8.4 ha) and fertilized (12.4 ha) systems to compare N dynamics and fate. Two full tidal cycles were intensively studied during the paired tracer additions. Resulting mass balances showed that essentially 100% (0.48–0.61 mol NO3-N·ha−1·h−1) of incoming NO3− was assimilated, dissimilated, sorbed, or sedimented (processed) within a few hours in the reference system when NO3− concentrations were 1.3–1.8 μmol/L. In contrast, only 50–60% of incoming NO3− was processed in the fertilized system when NO3− concentrations were 84–96 μmol/L; the remainder was exported in ebb tidewater. Gross NO3− processing was 40 times higher in the fertilized system at 19.34–24.67 mol NO3-N·ha−1·h−1. Dissimilatory nitrate reduction to ammonium was evident in both systems during the first 48 h of the tracer additions but 〈1% of incoming 15NO3− was exported as 15NH4+. Nitrification rates calculated by 15NO3− dilution were 6.05 and 4.46 mol·ha−1·h−1 in the fertilized system but could not be accurately calculated in the reference system due to rapid (〈4 h) NO3− turnover. Over the five-day paired tracer addition, sediments sequestered a small fraction of incoming NO3−, although the efficiency of sequestration was 3.8% in the reference system and 0.7% in the fertilized system. Gross sediment N sequestration rates were similar at 13.5 and 12.6 mol·ha−1·d−1, respectively. Macrophyte NO3− uptake efficiency, based on tracer incorporation in aboveground tissues, was considerably higher in the reference system (16.8%) than the fertilized system (2.6%), although bulk uptake of NO3− by plants was lower in the reference system (1.75 mol NO3−·ha−1·d−1) than the fertilized system (10 mol NO3−·ha−1·d−1). Nitrogen processing efficiency decreased with NO3− load in all pools, suggesting that the nutrient processing capacity of the marsh ecosystem was exceeded in the fertilized marsh.
    Description: This work was funded by National Science Foundation Grant DEB 0213767 and OCE 9726921.
    Keywords: Biogeochemistry ; Eutrophication ; New England ; USA ; Nitrogen processing efficiency ; Salt marsh ; Stable isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...